Guangzhi Ma , Dongsheng Wang , Yunfu Deng , Weijia Huang , Yifan Zhai , Shi-Yong Sun
{"title":"通过抑制Mcl-1靶向激活内在凋亡通路延缓肺癌对奥西替尼获得性耐药的出现","authors":"Guangzhi Ma , Dongsheng Wang , Yunfu Deng , Weijia Huang , Yifan Zhai , Shi-Yong Sun","doi":"10.1016/j.canlet.2025.217962","DOIUrl":null,"url":null,"abstract":"<div><div>Treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) using mutation-selective third generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib has achieved remarkable success. However, the emergence of acquired resistance is an inevitable challenge that limits the long-term remission of patients. Thus, it is critical to manage acquired resistance to osimertinib to maximize its therapeutic efficacy for long-term therapeutic benefit. To this end, taking an early intervention to delay or even prevent the emergence of acquired resistance to osimertinib offers an effective strategy. The current study suggests an effective strategy to do so through directly targeting the intrinsic apoptotic pathway via Mcl-1 inhibition. Several EGFR-mutant NSCLC cell lines with primary resistance to osimertinib possessed elevated levels of Mcl-1, which were no longer reduced by osimertinib. The combination of osimertinib with an Mcl-1 inhibitor (e.g., S63845 or APG3526) synergistically decreased the survival of these resistant cell lines with enhanced induction of apoptosis including augmentation of mitochondrial cytochrome C and Smac release. This combination effectively eliminated senescence-like drug-tolerant persister cells, which had elevated Mcl-1 levels, and abrogated emergence of acquired resistance to osimertinib as demonstrated using both <em>in vitro</em> cell culture and <em>in vivo</em> animal models. Collectively, these results convincingly demonstrate a novel and effective strategy for delaying the emergence of acquired resistance to osimertinib by targeting activation of the intrinsic apoptotic pathway through Mcl-1 inhibition, warranting further clinical validation of this strategy.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"632 ","pages":"Article 217962"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition to delay emergence of acquired resistance of lung cancer to osimertinib\",\"authors\":\"Guangzhi Ma , Dongsheng Wang , Yunfu Deng , Weijia Huang , Yifan Zhai , Shi-Yong Sun\",\"doi\":\"10.1016/j.canlet.2025.217962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) using mutation-selective third generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib has achieved remarkable success. However, the emergence of acquired resistance is an inevitable challenge that limits the long-term remission of patients. Thus, it is critical to manage acquired resistance to osimertinib to maximize its therapeutic efficacy for long-term therapeutic benefit. To this end, taking an early intervention to delay or even prevent the emergence of acquired resistance to osimertinib offers an effective strategy. The current study suggests an effective strategy to do so through directly targeting the intrinsic apoptotic pathway via Mcl-1 inhibition. Several EGFR-mutant NSCLC cell lines with primary resistance to osimertinib possessed elevated levels of Mcl-1, which were no longer reduced by osimertinib. The combination of osimertinib with an Mcl-1 inhibitor (e.g., S63845 or APG3526) synergistically decreased the survival of these resistant cell lines with enhanced induction of apoptosis including augmentation of mitochondrial cytochrome C and Smac release. This combination effectively eliminated senescence-like drug-tolerant persister cells, which had elevated Mcl-1 levels, and abrogated emergence of acquired resistance to osimertinib as demonstrated using both <em>in vitro</em> cell culture and <em>in vivo</em> animal models. Collectively, these results convincingly demonstrate a novel and effective strategy for delaying the emergence of acquired resistance to osimertinib by targeting activation of the intrinsic apoptotic pathway through Mcl-1 inhibition, warranting further clinical validation of this strategy.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"632 \",\"pages\":\"Article 217962\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525005312\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525005312","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition to delay emergence of acquired resistance of lung cancer to osimertinib
Treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) using mutation-selective third generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib has achieved remarkable success. However, the emergence of acquired resistance is an inevitable challenge that limits the long-term remission of patients. Thus, it is critical to manage acquired resistance to osimertinib to maximize its therapeutic efficacy for long-term therapeutic benefit. To this end, taking an early intervention to delay or even prevent the emergence of acquired resistance to osimertinib offers an effective strategy. The current study suggests an effective strategy to do so through directly targeting the intrinsic apoptotic pathway via Mcl-1 inhibition. Several EGFR-mutant NSCLC cell lines with primary resistance to osimertinib possessed elevated levels of Mcl-1, which were no longer reduced by osimertinib. The combination of osimertinib with an Mcl-1 inhibitor (e.g., S63845 or APG3526) synergistically decreased the survival of these resistant cell lines with enhanced induction of apoptosis including augmentation of mitochondrial cytochrome C and Smac release. This combination effectively eliminated senescence-like drug-tolerant persister cells, which had elevated Mcl-1 levels, and abrogated emergence of acquired resistance to osimertinib as demonstrated using both in vitro cell culture and in vivo animal models. Collectively, these results convincingly demonstrate a novel and effective strategy for delaying the emergence of acquired resistance to osimertinib by targeting activation of the intrinsic apoptotic pathway through Mcl-1 inhibition, warranting further clinical validation of this strategy.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.