HOCl/ClONO2催化循环:促进空气-水界面N2O5的反应性吸附。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangyu Chen, Zhengyi Wan, Qi Bai, Chongqin Zhu* and Joseph S. Francisco*, 
{"title":"HOCl/ClONO2催化循环:促进空气-水界面N2O5的反应性吸附。","authors":"Xiangyu Chen,&nbsp;Zhengyi Wan,&nbsp;Qi Bai,&nbsp;Chongqin Zhu* and Joseph S. Francisco*,&nbsp;","doi":"10.1021/jacs.5c08347","DOIUrl":null,"url":null,"abstract":"<p >Changes in the reactive uptake of dinitrogen pentoxide (N<sub>2</sub>O<sub>5</sub>) by aerosols play important roles in regulating the levels of O<sub>3</sub>, OH, NO<sub><i>x</i></sub>, and CH<sub>4</sub>. However, a quantitative understanding of the uptake mechanism remains incomplete. Herein, we show that a HOCl/ClONO<sub>2</sub> catalytic cycle facilitates the reactive uptake of N<sub>2</sub>O<sub>5</sub> at the air–water interface. Our <i>ab initio</i> molecular dynamics (AIMD) simulations reveal that the (N<sub>2</sub>O<sub>5</sub>)N···O(HOCl) dipole–dipole interaction is the primary interaction between HOCl and N<sub>2</sub>O<sub>5</sub> at the air–water interface. This interaction promotes the formation of an N–O bond and leads to the generation of NO<sub>3</sub><sup>–</sup>, ClONO<sub>2</sub>, and H<sub>3</sub>O<sup>+</sup>. Free-energy calculations further reveal that this reaction is both kinetically and thermodynamically more favorable at the air–water interface than in bulk water and has an energy barrier of ∼5.3 kcal/mol. Additionally, the generated ClONO<sub>2</sub> rapidly hydrolyzes at the interface and forms HOCl, NO<sub>3</sub><sup>–</sup>, and H<sub>3</sub>O<sup>+</sup>. The net reaction is as follows: N<sub>2</sub>O<sub>5</sub> + 3H<sub>2</sub>O → 2NO<sub>3</sub><sup>–</sup> + 2H<sub>3</sub>O<sup>+</sup>. This mechanism allows a single HOCl molecule to participate in multiple HOCl/ClONO<sub>2</sub> cycles, thereby enhancing the reactive uptake of N<sub>2</sub>O<sub>5</sub> by aerosols. This study provides insights for interpreting experimental results and has broader implications for understanding the chemistry of aerosols and clouds at the air–water interface.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 32","pages":"29215–29222"},"PeriodicalIF":15.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOCl/ClONO2 Catalytic Cycle: Promotion of the Reactive Uptake of N2O5 at the Air–Water Interface\",\"authors\":\"Xiangyu Chen,&nbsp;Zhengyi Wan,&nbsp;Qi Bai,&nbsp;Chongqin Zhu* and Joseph S. Francisco*,&nbsp;\",\"doi\":\"10.1021/jacs.5c08347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Changes in the reactive uptake of dinitrogen pentoxide (N<sub>2</sub>O<sub>5</sub>) by aerosols play important roles in regulating the levels of O<sub>3</sub>, OH, NO<sub><i>x</i></sub>, and CH<sub>4</sub>. However, a quantitative understanding of the uptake mechanism remains incomplete. Herein, we show that a HOCl/ClONO<sub>2</sub> catalytic cycle facilitates the reactive uptake of N<sub>2</sub>O<sub>5</sub> at the air–water interface. Our <i>ab initio</i> molecular dynamics (AIMD) simulations reveal that the (N<sub>2</sub>O<sub>5</sub>)N···O(HOCl) dipole–dipole interaction is the primary interaction between HOCl and N<sub>2</sub>O<sub>5</sub> at the air–water interface. This interaction promotes the formation of an N–O bond and leads to the generation of NO<sub>3</sub><sup>–</sup>, ClONO<sub>2</sub>, and H<sub>3</sub>O<sup>+</sup>. Free-energy calculations further reveal that this reaction is both kinetically and thermodynamically more favorable at the air–water interface than in bulk water and has an energy barrier of ∼5.3 kcal/mol. Additionally, the generated ClONO<sub>2</sub> rapidly hydrolyzes at the interface and forms HOCl, NO<sub>3</sub><sup>–</sup>, and H<sub>3</sub>O<sup>+</sup>. The net reaction is as follows: N<sub>2</sub>O<sub>5</sub> + 3H<sub>2</sub>O → 2NO<sub>3</sub><sup>–</sup> + 2H<sub>3</sub>O<sup>+</sup>. This mechanism allows a single HOCl molecule to participate in multiple HOCl/ClONO<sub>2</sub> cycles, thereby enhancing the reactive uptake of N<sub>2</sub>O<sub>5</sub> by aerosols. This study provides insights for interpreting experimental results and has broader implications for understanding the chemistry of aerosols and clouds at the air–water interface.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 32\",\"pages\":\"29215–29222\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c08347\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c08347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶对五氧化二氮(N2O5)的反应性吸收变化在调节O3、OH、NOx和CH4水平中起重要作用。然而,对摄取机制的定量理解仍然不完整。在此,我们发现HOCl/ClONO2催化循环促进了N2O5在空气-水界面的反应性吸收。从头算分子动力学(AIMD)模拟表明,(N2O5)N···O(HOCl)偶极子-偶极子相互作用是HOCl与N2O5在空气-水界面的主要相互作用。这种相互作用促进了N-O键的形成,并导致NO3-、ClONO2和h30 +的生成。自由能计算进一步表明,该反应在空气-水界面的动力学和热力学上都比在大量水中更有利,并且具有约5.3 kcal/mol的能垒。此外,生成的ClONO2在界面处快速水解形成HOCl、NO3-和h30 +。净反应为:N2O5 + 3H2O→2NO3- + 2h30o +。该机制允许单个HOCl分子参与多个HOCl/ClONO2循环,从而增强气溶胶对N2O5的反应性吸收。这项研究为解释实验结果提供了见解,并对理解空气-水界面上气溶胶和云的化学性质具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

HOCl/ClONO2 Catalytic Cycle: Promotion of the Reactive Uptake of N2O5 at the Air–Water Interface

HOCl/ClONO2 Catalytic Cycle: Promotion of the Reactive Uptake of N2O5 at the Air–Water Interface

Changes in the reactive uptake of dinitrogen pentoxide (N2O5) by aerosols play important roles in regulating the levels of O3, OH, NOx, and CH4. However, a quantitative understanding of the uptake mechanism remains incomplete. Herein, we show that a HOCl/ClONO2 catalytic cycle facilitates the reactive uptake of N2O5 at the air–water interface. Our ab initio molecular dynamics (AIMD) simulations reveal that the (N2O5)N···O(HOCl) dipole–dipole interaction is the primary interaction between HOCl and N2O5 at the air–water interface. This interaction promotes the formation of an N–O bond and leads to the generation of NO3, ClONO2, and H3O+. Free-energy calculations further reveal that this reaction is both kinetically and thermodynamically more favorable at the air–water interface than in bulk water and has an energy barrier of ∼5.3 kcal/mol. Additionally, the generated ClONO2 rapidly hydrolyzes at the interface and forms HOCl, NO3, and H3O+. The net reaction is as follows: N2O5 + 3H2O → 2NO3 + 2H3O+. This mechanism allows a single HOCl molecule to participate in multiple HOCl/ClONO2 cycles, thereby enhancing the reactive uptake of N2O5 by aerosols. This study provides insights for interpreting experimental results and has broader implications for understanding the chemistry of aerosols and clouds at the air–water interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信