胰岛-1相互作用伙伴Rnf20调节葡萄糖稳态和胰腺β细胞身份

IF 7.5 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2025-07-31 DOI:10.2337/db25-0167
Tanya H. Pierre, Maigen M. Bethea, Kristen Coutinho, Yanping Liu, Jin-Hua Liu, Min Guo, Sahil Chada, Sylvia M. Evans, Wei Li, Sushant Bhatnagar, Roland W. Stein, Chad S. Hunter
{"title":"胰岛-1相互作用伙伴Rnf20调节葡萄糖稳态和胰腺β细胞身份","authors":"Tanya H. Pierre, Maigen M. Bethea, Kristen Coutinho, Yanping Liu, Jin-Hua Liu, Min Guo, Sahil Chada, Sylvia M. Evans, Wei Li, Sushant Bhatnagar, Roland W. Stein, Chad S. Hunter","doi":"10.2337/db25-0167","DOIUrl":null,"url":null,"abstract":"Diabetes is characterized by a loss of functional β-cell mass; therefore, identifying factors involved in establishing and preserving β-cells is critical to combat rising diabetes incidence. While transcription factors are crucial β-cell regulators, knowledge of coregulators facilitating gene expression is limited. Previously, we demonstrated that the islet-1 (Isl1) transcription factor forms complexes with ubiquitin ligases ring finger 20 (Rnf20) and Rnf40 to regulate β-cells in vitro. Here, we investigated whether Rnf20-mediated complexes are required for β-cell function in adult islets by characterizing a novel β-cell–enriched Rnf20 knockout mouse model. Tamoxifen induction of Rnf20 recombination prompted a robust loss of histone 2B monoubiquitination, imparted severe hyperglycemia and glucose intolerance, and elicited an overall reduction in insulin content. Expression of mRNAs and proteins involved in glucose-stimulated insulin secretion and β-cell identity were also dysregulated in Rnf20Δβ-cell mice. Comparative analyses of the loss of either Rnf20 or Isl1 yielded similar changes in the β-cell regulome, supporting that Isl1::Rnf20 complexes are critical regulators of β-cell identity and function. Isl1::Rnf20 complexes are maintained in human tissues wherein they regulate insulin expression, secretion, and content. These findings increase our understanding of key players in β-cell maintenance, which is crucial for the advancement of β-cell derivation diabetes therapeutics. Article Highlights Transcription factor Islet-1 (Isl1) and ubiquitin ligase Ring Finger 20 (Rnf20) complexes regulate insulin secretion and β-cell gene expression in vitro. Loss of Rnf20 in adult β-cells disrupts β-cell identity and insulin processing, production, and secretion. In complex with Isl1, Rnf20 influences the β-cell regulome and supports proper glucose homeostasis.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"3 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Islet-1 Interaction Partner Rnf20 Regulates Glucose Homeostasis and Pancreatic β-Cell Identity\",\"authors\":\"Tanya H. Pierre, Maigen M. Bethea, Kristen Coutinho, Yanping Liu, Jin-Hua Liu, Min Guo, Sahil Chada, Sylvia M. Evans, Wei Li, Sushant Bhatnagar, Roland W. Stein, Chad S. Hunter\",\"doi\":\"10.2337/db25-0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is characterized by a loss of functional β-cell mass; therefore, identifying factors involved in establishing and preserving β-cells is critical to combat rising diabetes incidence. While transcription factors are crucial β-cell regulators, knowledge of coregulators facilitating gene expression is limited. Previously, we demonstrated that the islet-1 (Isl1) transcription factor forms complexes with ubiquitin ligases ring finger 20 (Rnf20) and Rnf40 to regulate β-cells in vitro. Here, we investigated whether Rnf20-mediated complexes are required for β-cell function in adult islets by characterizing a novel β-cell–enriched Rnf20 knockout mouse model. Tamoxifen induction of Rnf20 recombination prompted a robust loss of histone 2B monoubiquitination, imparted severe hyperglycemia and glucose intolerance, and elicited an overall reduction in insulin content. Expression of mRNAs and proteins involved in glucose-stimulated insulin secretion and β-cell identity were also dysregulated in Rnf20Δβ-cell mice. Comparative analyses of the loss of either Rnf20 or Isl1 yielded similar changes in the β-cell regulome, supporting that Isl1::Rnf20 complexes are critical regulators of β-cell identity and function. Isl1::Rnf20 complexes are maintained in human tissues wherein they regulate insulin expression, secretion, and content. These findings increase our understanding of key players in β-cell maintenance, which is crucial for the advancement of β-cell derivation diabetes therapeutics. Article Highlights Transcription factor Islet-1 (Isl1) and ubiquitin ligase Ring Finger 20 (Rnf20) complexes regulate insulin secretion and β-cell gene expression in vitro. Loss of Rnf20 in adult β-cells disrupts β-cell identity and insulin processing, production, and secretion. In complex with Isl1, Rnf20 influences the β-cell regulome and supports proper glucose homeostasis.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db25-0167\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db25-0167","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病的特征是失去功能性β细胞团;因此,确定与β细胞的建立和保存有关的因素对于对抗不断上升的糖尿病发病率至关重要。虽然转录因子是至关重要的β细胞调节因子,但对促进基因表达的共调节因子的了解有限。之前,我们证明了胰岛-1 (Isl1)转录因子与泛素连接酶环指20 (Rnf20)和Rnf40形成复合物,在体外调节β-细胞。在这里,我们通过表征一种新的富含β细胞的Rnf20敲除小鼠模型来研究成人胰岛中β细胞功能是否需要Rnf20介导的复合物。他莫昔芬诱导Rnf20重组可导致组蛋白2B单泛素化的严重缺失,导致严重的高血糖和葡萄糖耐受不良,并引起胰岛素含量的总体降低。参与葡萄糖刺激胰岛素分泌和β细胞身份的mrna和蛋白质的表达也在Rnf20Δβ-cell小鼠中失调。对Rnf20和Isl1缺失的比较分析显示,β-细胞规则组发生了类似的变化,支持Isl1::Rnf20复合物是β-细胞身份和功能的关键调节因子。Isl1::Rnf20复合物在人体组织中维持,它们调节胰岛素的表达、分泌和含量。这些发现增加了我们对β细胞维持的关键参与者的理解,这对于β细胞衍生性糖尿病治疗的进展至关重要。转录因子胰岛素-1 (Isl1)和泛素连接酶环指20 (Rnf20)复合物在体外调节胰岛素分泌和β细胞基因表达。成人β细胞中Rnf20的缺失会破坏β细胞的身份和胰岛素的加工、产生和分泌。与Isl1复合物,Rnf20影响β-细胞的调节和支持适当的葡萄糖稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Islet-1 Interaction Partner Rnf20 Regulates Glucose Homeostasis and Pancreatic β-Cell Identity
Diabetes is characterized by a loss of functional β-cell mass; therefore, identifying factors involved in establishing and preserving β-cells is critical to combat rising diabetes incidence. While transcription factors are crucial β-cell regulators, knowledge of coregulators facilitating gene expression is limited. Previously, we demonstrated that the islet-1 (Isl1) transcription factor forms complexes with ubiquitin ligases ring finger 20 (Rnf20) and Rnf40 to regulate β-cells in vitro. Here, we investigated whether Rnf20-mediated complexes are required for β-cell function in adult islets by characterizing a novel β-cell–enriched Rnf20 knockout mouse model. Tamoxifen induction of Rnf20 recombination prompted a robust loss of histone 2B monoubiquitination, imparted severe hyperglycemia and glucose intolerance, and elicited an overall reduction in insulin content. Expression of mRNAs and proteins involved in glucose-stimulated insulin secretion and β-cell identity were also dysregulated in Rnf20Δβ-cell mice. Comparative analyses of the loss of either Rnf20 or Isl1 yielded similar changes in the β-cell regulome, supporting that Isl1::Rnf20 complexes are critical regulators of β-cell identity and function. Isl1::Rnf20 complexes are maintained in human tissues wherein they regulate insulin expression, secretion, and content. These findings increase our understanding of key players in β-cell maintenance, which is crucial for the advancement of β-cell derivation diabetes therapeutics. Article Highlights Transcription factor Islet-1 (Isl1) and ubiquitin ligase Ring Finger 20 (Rnf20) complexes regulate insulin secretion and β-cell gene expression in vitro. Loss of Rnf20 in adult β-cells disrupts β-cell identity and insulin processing, production, and secretion. In complex with Isl1, Rnf20 influences the β-cell regulome and supports proper glucose homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信