大样本水文学中ML和可解释AI的挑战与机遇。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Louise Slater, Georgios Blougouras, Liangkun Deng, Qimin Deng, Emma Ford, Anne Hoek van Dijke, Feini Huang, Shijie Jiang, Yinxue Liu, Simon Moulds, Andrew Schepen, Jiabo Yin, Boen Zhang
{"title":"大样本水文学中ML和可解释AI的挑战与机遇。","authors":"Louise Slater, Georgios Blougouras, Liangkun Deng, Qimin Deng, Emma Ford, Anne Hoek van Dijke, Feini Huang, Shijie Jiang, Yinxue Liu, Simon Moulds, Andrew Schepen, Jiabo Yin, Boen Zhang","doi":"10.1098/rsta.2024.0287","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is a powerful tool for hydrological modelling, prediction, dataset creation and the generation of insights into hydrological processes. As such, ML has become integral to the field of large-sample hydrology, where hundreds to thousands of river catchments are included within a single ML model to capture diverse hydrological behaviours and improve model generalizability. This manuscript outlines recent advances in ML for large-sample hydrology. We review new tools in explainable AI (XAI) and interpretability approaches, as well as challenges in these areas. Key research avenues for large-sample hydrology include addressing variability in interpretations resulting from different ML models and XAI techniques, enhancing hydrological predictions in data-sparse and human-impacted regions, reducing the 'cascade of uncertainty' inherent in hydrological modelling, developing improved methods for multivariate prediction and identifying causal relationships.This article is part of the discussion meeting issue 'Hydrology in the 21st century: challenges in science, to policy and practice'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2302","pages":"20240287"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges and opportunities of ML and explainable AI in large-sample hydrology.\",\"authors\":\"Louise Slater, Georgios Blougouras, Liangkun Deng, Qimin Deng, Emma Ford, Anne Hoek van Dijke, Feini Huang, Shijie Jiang, Yinxue Liu, Simon Moulds, Andrew Schepen, Jiabo Yin, Boen Zhang\",\"doi\":\"10.1098/rsta.2024.0287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) is a powerful tool for hydrological modelling, prediction, dataset creation and the generation of insights into hydrological processes. As such, ML has become integral to the field of large-sample hydrology, where hundreds to thousands of river catchments are included within a single ML model to capture diverse hydrological behaviours and improve model generalizability. This manuscript outlines recent advances in ML for large-sample hydrology. We review new tools in explainable AI (XAI) and interpretability approaches, as well as challenges in these areas. Key research avenues for large-sample hydrology include addressing variability in interpretations resulting from different ML models and XAI techniques, enhancing hydrological predictions in data-sparse and human-impacted regions, reducing the 'cascade of uncertainty' inherent in hydrological modelling, developing improved methods for multivariate prediction and identifying causal relationships.This article is part of the discussion meeting issue 'Hydrology in the 21st century: challenges in science, to policy and practice'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2302\",\"pages\":\"20240287\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0287\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0287","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)是水文建模、预测、数据集创建和生成水文过程见解的强大工具。因此,ML已成为大样本水文学领域不可或缺的一部分,其中数百到数千个河流集水区被包含在单个ML模型中,以捕获不同的水文行为并提高模型的可泛化性。本文概述了大样本水文学中ML的最新进展。我们回顾了可解释人工智能(XAI)和可解释性方法中的新工具,以及这些领域的挑战。大样本水文学的主要研究途径包括解决由不同ML模型和XAI技术产生的解释的可变性,增强数据稀疏和人类影响地区的水文预测,减少水文建模固有的“不确定性级联”,开发改进的多变量预测方法和确定因果关系。这篇文章是“21世纪的水文学:科学、政策和实践的挑战”讨论会议的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and opportunities of ML and explainable AI in large-sample hydrology.

Machine learning (ML) is a powerful tool for hydrological modelling, prediction, dataset creation and the generation of insights into hydrological processes. As such, ML has become integral to the field of large-sample hydrology, where hundreds to thousands of river catchments are included within a single ML model to capture diverse hydrological behaviours and improve model generalizability. This manuscript outlines recent advances in ML for large-sample hydrology. We review new tools in explainable AI (XAI) and interpretability approaches, as well as challenges in these areas. Key research avenues for large-sample hydrology include addressing variability in interpretations resulting from different ML models and XAI techniques, enhancing hydrological predictions in data-sparse and human-impacted regions, reducing the 'cascade of uncertainty' inherent in hydrological modelling, developing improved methods for multivariate prediction and identifying causal relationships.This article is part of the discussion meeting issue 'Hydrology in the 21st century: challenges in science, to policy and practice'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信