{"title":"聚苯乙烯微珠对大水蚤毒性作用的发育阶段依赖性间隙限制。","authors":"Haruka Ito, Hitoshi Miyakawa","doi":"10.1002/jat.4875","DOIUrl":null,"url":null,"abstract":"<p><p>Complex mechanisms by which microplastics exert toxicity in natural environments are poorly understood, and their ecotoxicological assessment remains challenging due to their heterogeneous nature and physical properties. Methods for standard toxicity tests, originally developed for soluble chemicals, often fail to account for microplastic-specific behaviors such as sedimentation and variable ingestion by organisms. In this study, we used a rotator-based, semi-static exposure system to evaluate developmental-stage-specific toxicity of polystyrene microbeads of two sizes (3 μm and 30 μm) on Daphnia magna. Three exposure designs were employed: continuous exposure to single bead sizes, exposure to size mixtures, and sequential exposure aligned with developmental stages. These results demonstrated that 3-μm beads exerted stronger toxic effects in early life stages, whereas 30-μm beads had greater impacts in later stages, likely due to gape limitation and ontogenetic changes in ingestion capacity. Mixed-size exposure revealed potential additive or synergistic effects, particularly for body length. The rotator system ensured homogeneous particle suspensions and reproducible data, overcoming limitations of conventional static systems. These findings highlight the need to consider particle size heterogeneity, organismal developmental stage, and exposure method when assessing microplastic toxicity. Furthermore, our findings also suggest that chronic exposure to mixed particle sizes may better represent environmental situations and reveal stronger biological impacts than single-size exposures. By integrating particle size with organismal traits and realistic exposure dynamics, this study provides insight into the multifactorial nature of microplastic toxicity and supports the development of more ecologically relevant assessment methods.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental-Stage-Dependent Gape Limitation in the Toxic Effect of Polystyrene Microbeads on the Water Flea, Daphnia magna.\",\"authors\":\"Haruka Ito, Hitoshi Miyakawa\",\"doi\":\"10.1002/jat.4875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complex mechanisms by which microplastics exert toxicity in natural environments are poorly understood, and their ecotoxicological assessment remains challenging due to their heterogeneous nature and physical properties. Methods for standard toxicity tests, originally developed for soluble chemicals, often fail to account for microplastic-specific behaviors such as sedimentation and variable ingestion by organisms. In this study, we used a rotator-based, semi-static exposure system to evaluate developmental-stage-specific toxicity of polystyrene microbeads of two sizes (3 μm and 30 μm) on Daphnia magna. Three exposure designs were employed: continuous exposure to single bead sizes, exposure to size mixtures, and sequential exposure aligned with developmental stages. These results demonstrated that 3-μm beads exerted stronger toxic effects in early life stages, whereas 30-μm beads had greater impacts in later stages, likely due to gape limitation and ontogenetic changes in ingestion capacity. Mixed-size exposure revealed potential additive or synergistic effects, particularly for body length. The rotator system ensured homogeneous particle suspensions and reproducible data, overcoming limitations of conventional static systems. These findings highlight the need to consider particle size heterogeneity, organismal developmental stage, and exposure method when assessing microplastic toxicity. Furthermore, our findings also suggest that chronic exposure to mixed particle sizes may better represent environmental situations and reveal stronger biological impacts than single-size exposures. By integrating particle size with organismal traits and realistic exposure dynamics, this study provides insight into the multifactorial nature of microplastic toxicity and supports the development of more ecologically relevant assessment methods.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4875\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Developmental-Stage-Dependent Gape Limitation in the Toxic Effect of Polystyrene Microbeads on the Water Flea, Daphnia magna.
Complex mechanisms by which microplastics exert toxicity in natural environments are poorly understood, and their ecotoxicological assessment remains challenging due to their heterogeneous nature and physical properties. Methods for standard toxicity tests, originally developed for soluble chemicals, often fail to account for microplastic-specific behaviors such as sedimentation and variable ingestion by organisms. In this study, we used a rotator-based, semi-static exposure system to evaluate developmental-stage-specific toxicity of polystyrene microbeads of two sizes (3 μm and 30 μm) on Daphnia magna. Three exposure designs were employed: continuous exposure to single bead sizes, exposure to size mixtures, and sequential exposure aligned with developmental stages. These results demonstrated that 3-μm beads exerted stronger toxic effects in early life stages, whereas 30-μm beads had greater impacts in later stages, likely due to gape limitation and ontogenetic changes in ingestion capacity. Mixed-size exposure revealed potential additive or synergistic effects, particularly for body length. The rotator system ensured homogeneous particle suspensions and reproducible data, overcoming limitations of conventional static systems. These findings highlight the need to consider particle size heterogeneity, organismal developmental stage, and exposure method when assessing microplastic toxicity. Furthermore, our findings also suggest that chronic exposure to mixed particle sizes may better represent environmental situations and reveal stronger biological impacts than single-size exposures. By integrating particle size with organismal traits and realistic exposure dynamics, this study provides insight into the multifactorial nature of microplastic toxicity and supports the development of more ecologically relevant assessment methods.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.