Saoirse Walsh, Antje-Maria Lapschies, Vega Miguel-Ruano, María T Batuecas, Iván Acebrón-Ávalos, Thomas P Kohler, Sven Hammerschmidt, Inga Eichhorn, Juan A Hermoso, Marcus Fulde
{"title":"犬链球菌新型igg特异性蛋白酶IdeC的结构和功能表征","authors":"Saoirse Walsh, Antje-Maria Lapschies, Vega Miguel-Ruano, María T Batuecas, Iván Acebrón-Ávalos, Thomas P Kohler, Sven Hammerschmidt, Inga Eichhorn, Juan A Hermoso, Marcus Fulde","doi":"10.1128/iai.00248-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus canis</i> is an important opportunistic pathogen of cats, dogs, and cows, which can cause a range of infections, ranging from skin and soft tissue infections to septicemia and endocarditis. As a zoonotic agent, <i>S. canis</i> has also recently been implicated in serious human infections, following trauma or immunosuppression. In this work, we describe a novel protease of <i>S. canis</i>, termed IdeC (<u>I</u>mmunoglobulin G <u>d</u>egrading <u>e</u>nzyme of <i>S. <u>c</u>anis</i>), which may be involved in bacterial immune evasion. The cleaving ability of IdeC against IgG from various species was assessed; this revealed that IdeC successfully cleaved canine, feline, and human IgG. We also confirmed that IdeC is a cysteine protease, similar to IdeS of <i>Streptococcus pyogenes</i>. Investigation of the cleavage site in IgG sequences showed that it is highly conserved across IgGs from all species tested. From this analysis, it was determined that IdeC cleavage occurs between the CH2 and hinge regions of IgG. Interestingly, feline IgG was consistently cleaved with the highest efficiency, with human and canine IgG displaying less efficient cleavage. High-resolution crystal structures of two IdeC constructs provided insights into the catalytic machinery and substrate recognition. Modeling of the full-length IdeC:IgG complexes for human, canine, and feline cases explains the mechanism of action of the protease and reveals the molecular basis for the observed cleavage preference for feline IgG. Understanding and managing <i>S. canis</i> as a pathogen is important in both veterinary and human medicine, as this bacterium underscores the need for awareness of zoonotic transmission.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0024825"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural and functional characterization of IdeC, a novel IgG-specific protease of <i>Streptococcus canis</i>.\",\"authors\":\"Saoirse Walsh, Antje-Maria Lapschies, Vega Miguel-Ruano, María T Batuecas, Iván Acebrón-Ávalos, Thomas P Kohler, Sven Hammerschmidt, Inga Eichhorn, Juan A Hermoso, Marcus Fulde\",\"doi\":\"10.1128/iai.00248-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Streptococcus canis</i> is an important opportunistic pathogen of cats, dogs, and cows, which can cause a range of infections, ranging from skin and soft tissue infections to septicemia and endocarditis. As a zoonotic agent, <i>S. canis</i> has also recently been implicated in serious human infections, following trauma or immunosuppression. In this work, we describe a novel protease of <i>S. canis</i>, termed IdeC (<u>I</u>mmunoglobulin G <u>d</u>egrading <u>e</u>nzyme of <i>S. <u>c</u>anis</i>), which may be involved in bacterial immune evasion. The cleaving ability of IdeC against IgG from various species was assessed; this revealed that IdeC successfully cleaved canine, feline, and human IgG. We also confirmed that IdeC is a cysteine protease, similar to IdeS of <i>Streptococcus pyogenes</i>. Investigation of the cleavage site in IgG sequences showed that it is highly conserved across IgGs from all species tested. From this analysis, it was determined that IdeC cleavage occurs between the CH2 and hinge regions of IgG. Interestingly, feline IgG was consistently cleaved with the highest efficiency, with human and canine IgG displaying less efficient cleavage. High-resolution crystal structures of two IdeC constructs provided insights into the catalytic machinery and substrate recognition. Modeling of the full-length IdeC:IgG complexes for human, canine, and feline cases explains the mechanism of action of the protease and reveals the molecular basis for the observed cleavage preference for feline IgG. Understanding and managing <i>S. canis</i> as a pathogen is important in both veterinary and human medicine, as this bacterium underscores the need for awareness of zoonotic transmission.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0024825\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00248-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00248-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Structural and functional characterization of IdeC, a novel IgG-specific protease of Streptococcus canis.
Streptococcus canis is an important opportunistic pathogen of cats, dogs, and cows, which can cause a range of infections, ranging from skin and soft tissue infections to septicemia and endocarditis. As a zoonotic agent, S. canis has also recently been implicated in serious human infections, following trauma or immunosuppression. In this work, we describe a novel protease of S. canis, termed IdeC (Immunoglobulin G degrading enzyme of S. canis), which may be involved in bacterial immune evasion. The cleaving ability of IdeC against IgG from various species was assessed; this revealed that IdeC successfully cleaved canine, feline, and human IgG. We also confirmed that IdeC is a cysteine protease, similar to IdeS of Streptococcus pyogenes. Investigation of the cleavage site in IgG sequences showed that it is highly conserved across IgGs from all species tested. From this analysis, it was determined that IdeC cleavage occurs between the CH2 and hinge regions of IgG. Interestingly, feline IgG was consistently cleaved with the highest efficiency, with human and canine IgG displaying less efficient cleavage. High-resolution crystal structures of two IdeC constructs provided insights into the catalytic machinery and substrate recognition. Modeling of the full-length IdeC:IgG complexes for human, canine, and feline cases explains the mechanism of action of the protease and reveals the molecular basis for the observed cleavage preference for feline IgG. Understanding and managing S. canis as a pathogen is important in both veterinary and human medicine, as this bacterium underscores the need for awareness of zoonotic transmission.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.