Eduardo Godoy, Diego Mellado, Joaquin de Ferrari, Marvin Querales, Alex Saez, Steren Chabert, Denis Parra, Rodrigo Salas
{"title":"用于自动生成乳房x线摄影放射学报告的混合框架。","authors":"Eduardo Godoy, Diego Mellado, Joaquin de Ferrari, Marvin Querales, Alex Saez, Steren Chabert, Denis Parra, Rodrigo Salas","doi":"10.1016/j.csbj.2025.07.018","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a significant health concern for women at various stages of life, impacting both productivity and reproductive health. Recent advancements in deep learning (DL) have enabled substantial progress in the automation of radiological reports, offering potential support to radiologists and streamlining examination processes. This study introduces a framework for automated clinical text generation aimed at assisting radiologists in mammography examinations. Rather than replacing medical expertise, the system provides pre-processed evidence and automatic diagnostic suggestions for radiologist validation. The framework leverages an encoder-decoder architecture for natural language generation (NLG) models, trained and fine-tuned on a corpus of Spanish radiological text. Additionally, we incorporate an image intensity enhancement technique to address the issue of image quality variability and assess its impact on report generation outcomes. A comparative analysis using NLG metrics is conducted to identify the optimal feature extraction method. Furthermore, named entity recognition (NER) techniques are employed to extract key clinical concepts and automate precision evaluations. Our results demonstrate that the proposed framework could be a solid starting point for systematizing and implementing automated clinical report generation based on medical images.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3229-3239"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid framework for automated generation of mammography radiology reports.\",\"authors\":\"Eduardo Godoy, Diego Mellado, Joaquin de Ferrari, Marvin Querales, Alex Saez, Steren Chabert, Denis Parra, Rodrigo Salas\",\"doi\":\"10.1016/j.csbj.2025.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains a significant health concern for women at various stages of life, impacting both productivity and reproductive health. Recent advancements in deep learning (DL) have enabled substantial progress in the automation of radiological reports, offering potential support to radiologists and streamlining examination processes. This study introduces a framework for automated clinical text generation aimed at assisting radiologists in mammography examinations. Rather than replacing medical expertise, the system provides pre-processed evidence and automatic diagnostic suggestions for radiologist validation. The framework leverages an encoder-decoder architecture for natural language generation (NLG) models, trained and fine-tuned on a corpus of Spanish radiological text. Additionally, we incorporate an image intensity enhancement technique to address the issue of image quality variability and assess its impact on report generation outcomes. A comparative analysis using NLG metrics is conducted to identify the optimal feature extraction method. Furthermore, named entity recognition (NER) techniques are employed to extract key clinical concepts and automate precision evaluations. Our results demonstrate that the proposed framework could be a solid starting point for systematizing and implementing automated clinical report generation based on medical images.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3229-3239\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.018\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hybrid framework for automated generation of mammography radiology reports.
Breast cancer remains a significant health concern for women at various stages of life, impacting both productivity and reproductive health. Recent advancements in deep learning (DL) have enabled substantial progress in the automation of radiological reports, offering potential support to radiologists and streamlining examination processes. This study introduces a framework for automated clinical text generation aimed at assisting radiologists in mammography examinations. Rather than replacing medical expertise, the system provides pre-processed evidence and automatic diagnostic suggestions for radiologist validation. The framework leverages an encoder-decoder architecture for natural language generation (NLG) models, trained and fine-tuned on a corpus of Spanish radiological text. Additionally, we incorporate an image intensity enhancement technique to address the issue of image quality variability and assess its impact on report generation outcomes. A comparative analysis using NLG metrics is conducted to identify the optimal feature extraction method. Furthermore, named entity recognition (NER) techniques are employed to extract key clinical concepts and automate precision evaluations. Our results demonstrate that the proposed framework could be a solid starting point for systematizing and implementing automated clinical report generation based on medical images.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology