Jingjing Du;Lei Xiong;Dan Fei;Liang Shen;Xiangbing Tan
{"title":"基于Lyapunov算法的延迟敏感SAGIN联合卸载与资源分配","authors":"Jingjing Du;Lei Xiong;Dan Fei;Liang Shen;Xiangbing Tan","doi":"10.23919/JCN.2025.000033","DOIUrl":null,"url":null,"abstract":"The integration of mobile edge computing (MEC) and space-air-ground integrated network (SAGIN) can significantly reduce the user's task processing delay, while relieving the data pressure on the core network, so as to meet the performance requirements of computation capability, throughput, and delay brought about by the massive connectivity of SAGIN, which is an important direction for current research on 6G networks. In this study, we focus on optimizing user delay and usage costs within the SAGIN framework, which comprises low Earth orbit (LEO) satellites, high altitude balloons (HAB), and ground users. Specifically, ground users adopt a partial offloading strategy, wherein computational tasks are offloaded via HABs to MEC servers hosted by LEO satellites for processing. To accommodate the highly dynamic nature of the satellite constellation, we formulate an optimization problem aimed at maximizing the long-term time-averaged latency while minimizing costs, and introduce the Lyapunov optimization method to solve it. The simulation results demonstrate that our proposed algorithm can effectively reduce the network latency and user's usage cost, while ensuring system stability.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"27 3","pages":"166-178"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106372","citationCount":"0","resultStr":"{\"title\":\"Joint offloading and resource allocation based on Lyapunov algorithm in delay-sensitive SAGIN\",\"authors\":\"Jingjing Du;Lei Xiong;Dan Fei;Liang Shen;Xiangbing Tan\",\"doi\":\"10.23919/JCN.2025.000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of mobile edge computing (MEC) and space-air-ground integrated network (SAGIN) can significantly reduce the user's task processing delay, while relieving the data pressure on the core network, so as to meet the performance requirements of computation capability, throughput, and delay brought about by the massive connectivity of SAGIN, which is an important direction for current research on 6G networks. In this study, we focus on optimizing user delay and usage costs within the SAGIN framework, which comprises low Earth orbit (LEO) satellites, high altitude balloons (HAB), and ground users. Specifically, ground users adopt a partial offloading strategy, wherein computational tasks are offloaded via HABs to MEC servers hosted by LEO satellites for processing. To accommodate the highly dynamic nature of the satellite constellation, we formulate an optimization problem aimed at maximizing the long-term time-averaged latency while minimizing costs, and introduce the Lyapunov optimization method to solve it. The simulation results demonstrate that our proposed algorithm can effectively reduce the network latency and user's usage cost, while ensuring system stability.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":\"27 3\",\"pages\":\"166-178\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106372\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106372/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11106372/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint offloading and resource allocation based on Lyapunov algorithm in delay-sensitive SAGIN
The integration of mobile edge computing (MEC) and space-air-ground integrated network (SAGIN) can significantly reduce the user's task processing delay, while relieving the data pressure on the core network, so as to meet the performance requirements of computation capability, throughput, and delay brought about by the massive connectivity of SAGIN, which is an important direction for current research on 6G networks. In this study, we focus on optimizing user delay and usage costs within the SAGIN framework, which comprises low Earth orbit (LEO) satellites, high altitude balloons (HAB), and ground users. Specifically, ground users adopt a partial offloading strategy, wherein computational tasks are offloaded via HABs to MEC servers hosted by LEO satellites for processing. To accommodate the highly dynamic nature of the satellite constellation, we formulate an optimization problem aimed at maximizing the long-term time-averaged latency while minimizing costs, and introduce the Lyapunov optimization method to solve it. The simulation results demonstrate that our proposed algorithm can effectively reduce the network latency and user's usage cost, while ensuring system stability.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.