量子网络中多部状态分布的保真度感知多路径路由

IF 4.6
Evan Sutcliffe;Alejandra Beghelli
{"title":"量子网络中多部状态分布的保真度感知多路径路由","authors":"Evan Sutcliffe;Alejandra Beghelli","doi":"10.1109/TQE.2025.3588783","DOIUrl":null,"url":null,"abstract":"We consider the problem of distributing entangled multipartite states across a quantum network with improved distribution rate and fidelity. For this, we propose fidelity-aware multipath routing protocols, assess their performance in terms of the rate and fidelity of the distributed Greenberger–Horne–Zeilinger (GHZ) states, and compare such performance against that of single-path routing. Simulation results show that the proposed multipath routing protocols select routes that require more Bell states compared to single-path routing, but also require fewer rounds of Bell state generation. We also optimized the tradeoff between distribution rate and fidelity by selecting an appropriate cutoff to the quantum memory storage time. Using such a cutoff technique, the proposed multipath protocols can achieve up to an 8.3 times higher distribution rate and up to a 28% improvement in GHZ state fidelity compared to single-path routing. These results show that multipath routing both improves the distribution rates and enhances fidelity for multipartite state distribution.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-18"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11079232","citationCount":"0","resultStr":"{\"title\":\"Fidelity-Aware Multipath Routing for Multipartite State Distribution in Quantum Networks\",\"authors\":\"Evan Sutcliffe;Alejandra Beghelli\",\"doi\":\"10.1109/TQE.2025.3588783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of distributing entangled multipartite states across a quantum network with improved distribution rate and fidelity. For this, we propose fidelity-aware multipath routing protocols, assess their performance in terms of the rate and fidelity of the distributed Greenberger–Horne–Zeilinger (GHZ) states, and compare such performance against that of single-path routing. Simulation results show that the proposed multipath routing protocols select routes that require more Bell states compared to single-path routing, but also require fewer rounds of Bell state generation. We also optimized the tradeoff between distribution rate and fidelity by selecting an appropriate cutoff to the quantum memory storage time. Using such a cutoff technique, the proposed multipath protocols can achieve up to an 8.3 times higher distribution rate and up to a 28% improvement in GHZ state fidelity compared to single-path routing. These results show that multipath routing both improves the distribution rates and enhances fidelity for multipartite state distribution.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-18\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11079232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11079232/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11079232/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在量子网络中分配纠缠多部态的问题,提高了分配速率和保真度。为此,我们提出了保真度感知的多路径路由协议,根据分布式greenberger - horn - zeilinger (GHZ)状态的速率和保真度评估它们的性能,并将其与单路径路由的性能进行比较。仿真结果表明,与单路径路由相比,所提出的多路径路由协议选择的路由需要更多的贝尔状态,但也需要更少的贝尔状态生成轮数。我们还通过选择适当的量子存储器存储时间截止点来优化分布率和保真度之间的权衡。使用这种截止技术,与单路径路由相比,所提出的多路径协议可以实现高达8.3倍的分发率和高达28%的GHZ状态保真度改进。结果表明,多路径路由既提高了多部状态分布的分发率,又提高了多部状态分布的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fidelity-Aware Multipath Routing for Multipartite State Distribution in Quantum Networks
We consider the problem of distributing entangled multipartite states across a quantum network with improved distribution rate and fidelity. For this, we propose fidelity-aware multipath routing protocols, assess their performance in terms of the rate and fidelity of the distributed Greenberger–Horne–Zeilinger (GHZ) states, and compare such performance against that of single-path routing. Simulation results show that the proposed multipath routing protocols select routes that require more Bell states compared to single-path routing, but also require fewer rounds of Bell state generation. We also optimized the tradeoff between distribution rate and fidelity by selecting an appropriate cutoff to the quantum memory storage time. Using such a cutoff technique, the proposed multipath protocols can achieve up to an 8.3 times higher distribution rate and up to a 28% improvement in GHZ state fidelity compared to single-path routing. These results show that multipath routing both improves the distribution rates and enhances fidelity for multipartite state distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信