3D-HRSCD:利用三维卷积挖掘多尺度特征的潜力

IF 4.4
Yue Song;Sheng Fang;Zhe Li;Su Wang;Enyi Zhao
{"title":"3D-HRSCD:利用三维卷积挖掘多尺度特征的潜力","authors":"Yue Song;Sheng Fang;Zhe Li;Su Wang;Enyi Zhao","doi":"10.1109/LGRS.2025.3591276","DOIUrl":null,"url":null,"abstract":"Semantic change detection (SCD) in remote sensing image (RSI) is critical for monitoring land cover and land-use transformations. Although existing SCD methods have made progress in modeling temporal dependency, they still struggle to effectively capture multiscale features and make interaction among them. To address these issues, we propose 3D-HRSCD, a novel architecture that utilizes 3-D convolution to model temporal dependency across HRNet’s multiresolution features. The core of this architecture is 3-D convolution fusion oriented to multiscale (3DFOM) features module, which makes adequate interaction in channel, spatial, and temporal dimensions across multiscale features. To support more efficient temporal dependency modeling in 3DFOM, cosine similarity-based temporal multiscales attention (CTMAs) module serves as a preprocessing stage by enhancing features in change regions. Additionally, comprehensive semantic consistency (CSC) loss function is introduced to further suppress pseudo-changes and reduce semantic recognition errors. Experimental results reveal that our method outperforms state-of-the-art (SOTA) performances relative to previous SCD efforts.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-HRSCD: Exploiting the Potential of Multiscale Features by 3-D Convolution\",\"authors\":\"Yue Song;Sheng Fang;Zhe Li;Su Wang;Enyi Zhao\",\"doi\":\"10.1109/LGRS.2025.3591276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic change detection (SCD) in remote sensing image (RSI) is critical for monitoring land cover and land-use transformations. Although existing SCD methods have made progress in modeling temporal dependency, they still struggle to effectively capture multiscale features and make interaction among them. To address these issues, we propose 3D-HRSCD, a novel architecture that utilizes 3-D convolution to model temporal dependency across HRNet’s multiresolution features. The core of this architecture is 3-D convolution fusion oriented to multiscale (3DFOM) features module, which makes adequate interaction in channel, spatial, and temporal dimensions across multiscale features. To support more efficient temporal dependency modeling in 3DFOM, cosine similarity-based temporal multiscales attention (CTMAs) module serves as a preprocessing stage by enhancing features in change regions. Additionally, comprehensive semantic consistency (CSC) loss function is introduced to further suppress pseudo-changes and reduce semantic recognition errors. Experimental results reveal that our method outperforms state-of-the-art (SOTA) performances relative to previous SCD efforts.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11087592/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11087592/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感图像语义变化检测(SCD)是监测土地覆盖和土地利用变化的关键。尽管现有的SCD方法在时间依赖性建模方面取得了一定的进展,但它们仍然难以有效地捕获多尺度特征并实现它们之间的交互。为了解决这些问题,我们提出了3D-HRSCD,这是一种利用3d卷积来模拟HRNet多分辨率特征的时间依赖性的新架构。该体系结构的核心是面向多尺度的三维卷积融合(3DFOM)特征模块,可以在多尺度特征之间进行通道、空间和时间维度的充分交互。为了支持3DFOM中更高效的时间依赖建模,基于余弦相似度的时间多尺度注意(CTMAs)模块通过增强变化区域的特征作为预处理阶段。引入综合语义一致性(CSC)损失函数,进一步抑制伪变化,降低语义识别误差。实验结果表明,相对于以前的SCD方法,我们的方法优于最先进的(SOTA)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-HRSCD: Exploiting the Potential of Multiscale Features by 3-D Convolution
Semantic change detection (SCD) in remote sensing image (RSI) is critical for monitoring land cover and land-use transformations. Although existing SCD methods have made progress in modeling temporal dependency, they still struggle to effectively capture multiscale features and make interaction among them. To address these issues, we propose 3D-HRSCD, a novel architecture that utilizes 3-D convolution to model temporal dependency across HRNet’s multiresolution features. The core of this architecture is 3-D convolution fusion oriented to multiscale (3DFOM) features module, which makes adequate interaction in channel, spatial, and temporal dimensions across multiscale features. To support more efficient temporal dependency modeling in 3DFOM, cosine similarity-based temporal multiscales attention (CTMAs) module serves as a preprocessing stage by enhancing features in change regions. Additionally, comprehensive semantic consistency (CSC) loss function is introduced to further suppress pseudo-changes and reduce semantic recognition errors. Experimental results reveal that our method outperforms state-of-the-art (SOTA) performances relative to previous SCD efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信