ZrMn2化合物吸氢和解吸氢的综合实验和理论研究

IF 2.7 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Rached Ben Mehrez , Chaker Briki , Lilia El Amraoui , Kais Ouni , Abdelmajid Jemni
{"title":"ZrMn2化合物吸氢和解吸氢的综合实验和理论研究","authors":"Rached Ben Mehrez ,&nbsp;Chaker Briki ,&nbsp;Lilia El Amraoui ,&nbsp;Kais Ouni ,&nbsp;Abdelmajid Jemni","doi":"10.1016/j.fluid.2025.114543","DOIUrl":null,"url":null,"abstract":"<div><div>This comprehensive study investigates the hydrogen absorption–desorption mechanisms in ZrMn<sub>2</sub> compounds through a combination of experimental and theoretical approaches. The research systematically explores the alloy's physical and thermodynamic properties, emphasizing its structural integrity and thermodynamic stability. Pressure–composition–temperature (PCT) isotherms are employed to evaluate the hydrogen storage capacity and reversibility. Concurrently, theoretical models based on statistical physics are used to elucidate macroscale interactions, internal energy variations, and lattice strain behavior during hydrogen cycling. The hydrogen uptake process begins with physisorption, followed by dissociative chemisorption of hydrogen molecules at the surface, which then diffuse into the alloy matrix. The findings advance the understanding of hydrogen-intermetallic interactions and offer valuable insights for the development of ZrMn<sub>2</sub>-based materials in next-generation solid-state hydrogen storage systems, where optimizing storage capacity and kinetic performance is essential.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114543"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated experimental and theoretical investigation of hydrogen absorption and desorption in ZrMn2 compounds\",\"authors\":\"Rached Ben Mehrez ,&nbsp;Chaker Briki ,&nbsp;Lilia El Amraoui ,&nbsp;Kais Ouni ,&nbsp;Abdelmajid Jemni\",\"doi\":\"10.1016/j.fluid.2025.114543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This comprehensive study investigates the hydrogen absorption–desorption mechanisms in ZrMn<sub>2</sub> compounds through a combination of experimental and theoretical approaches. The research systematically explores the alloy's physical and thermodynamic properties, emphasizing its structural integrity and thermodynamic stability. Pressure–composition–temperature (PCT) isotherms are employed to evaluate the hydrogen storage capacity and reversibility. Concurrently, theoretical models based on statistical physics are used to elucidate macroscale interactions, internal energy variations, and lattice strain behavior during hydrogen cycling. The hydrogen uptake process begins with physisorption, followed by dissociative chemisorption of hydrogen molecules at the surface, which then diffuse into the alloy matrix. The findings advance the understanding of hydrogen-intermetallic interactions and offer valuable insights for the development of ZrMn<sub>2</sub>-based materials in next-generation solid-state hydrogen storage systems, where optimizing storage capacity and kinetic performance is essential.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"599 \",\"pages\":\"Article 114543\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225002134\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225002134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过实验和理论相结合的方法研究了ZrMn2化合物的吸氢-解吸机理。该研究系统地探讨了合金的物理和热力学性能,强调其结构完整性和热力学稳定性。采用压力-成分-温度(PCT)等温线评价储氢能力和可逆性。同时,基于统计物理的理论模型用于阐明氢循环过程中的宏观相互作用、内能变化和晶格应变行为。氢的吸收过程从物理吸附开始,然后是表面氢分子的离解化学吸附,然后扩散到合金基体中。这些发现促进了对氢-金属间相互作用的理解,并为下一代固态储氢系统中基于zrmn2的材料的开发提供了有价值的见解,其中优化存储容量和动力学性能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated experimental and theoretical investigation of hydrogen absorption and desorption in ZrMn2 compounds
This comprehensive study investigates the hydrogen absorption–desorption mechanisms in ZrMn2 compounds through a combination of experimental and theoretical approaches. The research systematically explores the alloy's physical and thermodynamic properties, emphasizing its structural integrity and thermodynamic stability. Pressure–composition–temperature (PCT) isotherms are employed to evaluate the hydrogen storage capacity and reversibility. Concurrently, theoretical models based on statistical physics are used to elucidate macroscale interactions, internal energy variations, and lattice strain behavior during hydrogen cycling. The hydrogen uptake process begins with physisorption, followed by dissociative chemisorption of hydrogen molecules at the surface, which then diffuse into the alloy matrix. The findings advance the understanding of hydrogen-intermetallic interactions and offer valuable insights for the development of ZrMn2-based materials in next-generation solid-state hydrogen storage systems, where optimizing storage capacity and kinetic performance is essential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信