熔融NaCl-MgCl2-LaCl3的结构动力学:熔融氯化物快堆燃料的一个代理

IF 3.2 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Woei Jer Ng , Aydar Rakhmatullin , Kateryna Goloviznina , Mathieu Salanne , Catherine Bessada
{"title":"熔融NaCl-MgCl2-LaCl3的结构动力学:熔融氯化物快堆燃料的一个代理","authors":"Woei Jer Ng ,&nbsp;Aydar Rakhmatullin ,&nbsp;Kateryna Goloviznina ,&nbsp;Mathieu Salanne ,&nbsp;Catherine Bessada","doi":"10.1016/j.jnucmat.2025.156056","DOIUrl":null,"url":null,"abstract":"<div><div>Chloride salts have emerged as the leading candidate fuel for the new generation of molten salt reactors, particularly molten chloride fast reactors (MCFRs). In France, the ARAMIS-A reactor design is exploring the use of NaCl–MgCl<sub>2</sub>–PuCl<sub>3</sub>–AmCl<sub>3</sub> as fuel for an actinide-burner reactor. However, literature on the structural dynamics of molten chloride fuel salts remains limited, restricting the accurate modelling of fuel performance and behaviour. In this study, we fill this gap by performing in-situ high-temperature nuclear magnetic resonance (HT-NMR) experiments on NaCl–MgCl<sub>2</sub>–LaCl<sub>3</sub>, as a surrogate to the (Pu,Am)Cl<sub>3</sub> fuel, to investigate the local structural chemistry of molten chloride salts. By complementing our experimental findings with solid-state nuclear magnetic resonance (SS-NMR) measurements, classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we elucidate the complex structural interactions in molten chloride systems, such as lanthanide network formation and chlorine bridging, and illustrate how these interactions vary with temperature and fuel composition. Our results establish a clear relationship between NMR chemical shifts and coordination numbers in molten salts, offering critical insights into the local structural environments that influence the behaviour of actinide-based fuels in molten salt reactors.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"616 ","pages":"Article 156056"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural dynamics of molten NaCl–MgCl2–LaCl3: A proxy for molten chloride fast reactor fuels\",\"authors\":\"Woei Jer Ng ,&nbsp;Aydar Rakhmatullin ,&nbsp;Kateryna Goloviznina ,&nbsp;Mathieu Salanne ,&nbsp;Catherine Bessada\",\"doi\":\"10.1016/j.jnucmat.2025.156056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chloride salts have emerged as the leading candidate fuel for the new generation of molten salt reactors, particularly molten chloride fast reactors (MCFRs). In France, the ARAMIS-A reactor design is exploring the use of NaCl–MgCl<sub>2</sub>–PuCl<sub>3</sub>–AmCl<sub>3</sub> as fuel for an actinide-burner reactor. However, literature on the structural dynamics of molten chloride fuel salts remains limited, restricting the accurate modelling of fuel performance and behaviour. In this study, we fill this gap by performing in-situ high-temperature nuclear magnetic resonance (HT-NMR) experiments on NaCl–MgCl<sub>2</sub>–LaCl<sub>3</sub>, as a surrogate to the (Pu,Am)Cl<sub>3</sub> fuel, to investigate the local structural chemistry of molten chloride salts. By complementing our experimental findings with solid-state nuclear magnetic resonance (SS-NMR) measurements, classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we elucidate the complex structural interactions in molten chloride systems, such as lanthanide network formation and chlorine bridging, and illustrate how these interactions vary with temperature and fuel composition. Our results establish a clear relationship between NMR chemical shifts and coordination numbers in molten salts, offering critical insights into the local structural environments that influence the behaviour of actinide-based fuels in molten salt reactors.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"616 \",\"pages\":\"Article 156056\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311525004507\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525004507","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氯化物已成为新一代熔盐堆,特别是熔氯快堆(MCFRs)的主要候选燃料。在法国,ARAMIS-A反应堆设计正在探索使用NaCl-MgCl2-PuCl3-AmCl3作为锕系元素燃烧器反应堆的燃料。然而,关于熔融氯化物燃料盐结构动力学的文献仍然有限,限制了燃料性能和行为的准确建模。在这项研究中,我们通过对NaCl-MgCl2-LaCl3进行原位高温核磁共振(HT-NMR)实验来填补这一空白,NaCl-MgCl2-LaCl3作为(Pu,Am)Cl3燃料的替代品,研究熔融氯盐的局部结构化学。通过用固态核磁共振(SS-NMR)测量、经典分子动力学(MD)模拟和密度泛函理论(DFT)计算来补充我们的实验结果,我们阐明了熔融氯化物系统中复杂的结构相互作用,如镧系元素网络的形成和氯桥接,并说明了这些相互作用如何随着温度和燃料成分而变化。我们的研究结果建立了熔盐中核磁共振化学位移和配位数之间的明确关系,为影响熔盐反应堆中锕系燃料行为的局部结构环境提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural dynamics of molten NaCl–MgCl2–LaCl3: A proxy for molten chloride fast reactor fuels

Structural dynamics of molten NaCl–MgCl2–LaCl3: A proxy for molten chloride fast reactor fuels
Chloride salts have emerged as the leading candidate fuel for the new generation of molten salt reactors, particularly molten chloride fast reactors (MCFRs). In France, the ARAMIS-A reactor design is exploring the use of NaCl–MgCl2–PuCl3–AmCl3 as fuel for an actinide-burner reactor. However, literature on the structural dynamics of molten chloride fuel salts remains limited, restricting the accurate modelling of fuel performance and behaviour. In this study, we fill this gap by performing in-situ high-temperature nuclear magnetic resonance (HT-NMR) experiments on NaCl–MgCl2–LaCl3, as a surrogate to the (Pu,Am)Cl3 fuel, to investigate the local structural chemistry of molten chloride salts. By complementing our experimental findings with solid-state nuclear magnetic resonance (SS-NMR) measurements, classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we elucidate the complex structural interactions in molten chloride systems, such as lanthanide network formation and chlorine bridging, and illustrate how these interactions vary with temperature and fuel composition. Our results establish a clear relationship between NMR chemical shifts and coordination numbers in molten salts, offering critical insights into the local structural environments that influence the behaviour of actinide-based fuels in molten salt reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信