使用开源大型语言模型协调有风险的器官结构名称

IF 3.3 Q2 ONCOLOGY
Adrian Thummerer , Matteo Maspero , Erik van der Bijl , Stefanie Corradini , Claus Belka , Guillaume Landry , Christopher Kurz
{"title":"使用开源大型语言模型协调有风险的器官结构名称","authors":"Adrian Thummerer ,&nbsp;Matteo Maspero ,&nbsp;Erik van der Bijl ,&nbsp;Stefanie Corradini ,&nbsp;Claus Belka ,&nbsp;Guillaume Landry ,&nbsp;Christopher Kurz","doi":"10.1016/j.phro.2025.100813","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Standardized radiotherapy structure nomenclature is crucial for automation, inter-institutional collaborations, and large-scale deep learning studies in radiation oncology. Despite the availability of nomenclature guidelines (AAPM-TG-263), their implementation is lacking and still faces challenges. This study evaluated open-source large language models (LLMs) for automated organ-at-risk (OAR) renaming on a multi-institutional and multilingual dataset.</div></div><div><h3>Materials and methods</h3><div>Four open-source LLMs (Llama 3.3, Llama 3.3 R1, DeepSeek V3, DeepSeek R1) were evaluated using a dataset of 34,177 OAR structures from 1684 patients collected at three university medical centers with manual TG-263 ground-truth labels. LLM renaming was performed using a few-shot prompting technique, including detailed instructions and generic examples. Performance was assessed by calculating renaming accuracy on the entire dataset and a unique dataset (duplicates removed). In addition, we performed a failure analysis, prompt-based confidence correlation, and Monte Carlo sampling-based uncertainty estimation.</div></div><div><h3>Results</h3><div>High renaming accuracy was achieved, with the reasoning-enhanced DeepSeek R1 model performing best (98.6 % unique accuracy, 99.9 % overall accuracy). Overall, reasoning models outperformed their non-reasoning counterparts. Monte Carlo sampling showed a stronger correlation with prediction errors (correlation coefficient of 0.70 for DeepSeek R1) and better error detection (Sensitivity 0.73, Specificity 1.0 for DeepSeek R1) compared to prompt-based confidence estimation (correlation coefficient &lt; 0.42).</div></div><div><h3>Conclusions</h3><div>Open-source LLMs, particularly those with reasoning capabilities, can accurately harmonize OAR nomenclature according to TG-263 across diverse multilingual and multi-institutional datasets. They can also facilitate TG-263 nomenclature adoption and the creation of large, standardized datasets for research and AI development.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"35 ","pages":"Article 100813"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonizing organ-at-risk structure names using open-source large language models\",\"authors\":\"Adrian Thummerer ,&nbsp;Matteo Maspero ,&nbsp;Erik van der Bijl ,&nbsp;Stefanie Corradini ,&nbsp;Claus Belka ,&nbsp;Guillaume Landry ,&nbsp;Christopher Kurz\",\"doi\":\"10.1016/j.phro.2025.100813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Standardized radiotherapy structure nomenclature is crucial for automation, inter-institutional collaborations, and large-scale deep learning studies in radiation oncology. Despite the availability of nomenclature guidelines (AAPM-TG-263), their implementation is lacking and still faces challenges. This study evaluated open-source large language models (LLMs) for automated organ-at-risk (OAR) renaming on a multi-institutional and multilingual dataset.</div></div><div><h3>Materials and methods</h3><div>Four open-source LLMs (Llama 3.3, Llama 3.3 R1, DeepSeek V3, DeepSeek R1) were evaluated using a dataset of 34,177 OAR structures from 1684 patients collected at three university medical centers with manual TG-263 ground-truth labels. LLM renaming was performed using a few-shot prompting technique, including detailed instructions and generic examples. Performance was assessed by calculating renaming accuracy on the entire dataset and a unique dataset (duplicates removed). In addition, we performed a failure analysis, prompt-based confidence correlation, and Monte Carlo sampling-based uncertainty estimation.</div></div><div><h3>Results</h3><div>High renaming accuracy was achieved, with the reasoning-enhanced DeepSeek R1 model performing best (98.6 % unique accuracy, 99.9 % overall accuracy). Overall, reasoning models outperformed their non-reasoning counterparts. Monte Carlo sampling showed a stronger correlation with prediction errors (correlation coefficient of 0.70 for DeepSeek R1) and better error detection (Sensitivity 0.73, Specificity 1.0 for DeepSeek R1) compared to prompt-based confidence estimation (correlation coefficient &lt; 0.42).</div></div><div><h3>Conclusions</h3><div>Open-source LLMs, particularly those with reasoning capabilities, can accurately harmonize OAR nomenclature according to TG-263 across diverse multilingual and multi-institutional datasets. They can also facilitate TG-263 nomenclature adoption and the creation of large, standardized datasets for research and AI development.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"35 \",\"pages\":\"Article 100813\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625001186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625001186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的标准化放疗结构命名对于放射肿瘤学的自动化、机构间合作和大规模深度学习研究至关重要。尽管有了命名指南(AAPM-TG-263),但它们的实施仍然缺乏,并且仍然面临挑战。本研究评估了开源大型语言模型(llm)在多机构和多语言数据集上的自动风险器官(OAR)重命名。材料和方法使用来自三所大学医学中心的1684名患者的34177个桨结构数据集,对四个开源llm (Llama 3.3, Llama 3.3 R1, DeepSeek V3, DeepSeek R1)进行评估,并使用手动TG-263 ground-truth标签。LLM重命名使用了几次提示技术,包括详细说明和通用示例。通过计算整个数据集和唯一数据集(删除重复项)的重命名准确性来评估性能。此外,我们还进行了失效分析、基于提示的置信度相关性和基于蒙特卡罗采样的不确定性估计。结果获得了较高的重命名准确率,其中推理增强的DeepSeek R1模型表现最佳(唯一准确率为98.6%,整体准确率为99.9%)。总体而言,推理模型的表现优于非推理模型。与基于提示的置信度估计(相关系数<;)相比,蒙特卡罗采样与预测误差的相关性更强(DeepSeek R1的相关系数为0.70),错误检测效果更好(灵敏度0.73,特异性1.0)。0.42)。开源法学硕士,特别是那些具有推理能力的法学硕士,可以根据TG-263在不同的多语言和多机构数据集上准确地协调OAR命名。它们还可以促进TG-263术语的采用,并为研究和人工智能开发创建大型标准化数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonizing organ-at-risk structure names using open-source large language models

Background and purpose

Standardized radiotherapy structure nomenclature is crucial for automation, inter-institutional collaborations, and large-scale deep learning studies in radiation oncology. Despite the availability of nomenclature guidelines (AAPM-TG-263), their implementation is lacking and still faces challenges. This study evaluated open-source large language models (LLMs) for automated organ-at-risk (OAR) renaming on a multi-institutional and multilingual dataset.

Materials and methods

Four open-source LLMs (Llama 3.3, Llama 3.3 R1, DeepSeek V3, DeepSeek R1) were evaluated using a dataset of 34,177 OAR structures from 1684 patients collected at three university medical centers with manual TG-263 ground-truth labels. LLM renaming was performed using a few-shot prompting technique, including detailed instructions and generic examples. Performance was assessed by calculating renaming accuracy on the entire dataset and a unique dataset (duplicates removed). In addition, we performed a failure analysis, prompt-based confidence correlation, and Monte Carlo sampling-based uncertainty estimation.

Results

High renaming accuracy was achieved, with the reasoning-enhanced DeepSeek R1 model performing best (98.6 % unique accuracy, 99.9 % overall accuracy). Overall, reasoning models outperformed their non-reasoning counterparts. Monte Carlo sampling showed a stronger correlation with prediction errors (correlation coefficient of 0.70 for DeepSeek R1) and better error detection (Sensitivity 0.73, Specificity 1.0 for DeepSeek R1) compared to prompt-based confidence estimation (correlation coefficient < 0.42).

Conclusions

Open-source LLMs, particularly those with reasoning capabilities, can accurately harmonize OAR nomenclature according to TG-263 across diverse multilingual and multi-institutional datasets. They can also facilitate TG-263 nomenclature adoption and the creation of large, standardized datasets for research and AI development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信