应用于蒙特卡罗粒子输运模拟的叠加网格计算材料体积分数

IF 2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Paul K. Romano , Samuel Pasmann , Patrick C. Shriwise , Charles P.S. Swanson
{"title":"应用于蒙特卡罗粒子输运模拟的叠加网格计算材料体积分数","authors":"Paul K. Romano ,&nbsp;Samuel Pasmann ,&nbsp;Patrick C. Shriwise ,&nbsp;Charles P.S. Swanson","doi":"10.1016/j.fusengdes.2025.115364","DOIUrl":null,"url":null,"abstract":"<div><div>We present a newly implemented ray tracing algorithm in OpenMC for efficiently computing material volume fractions on superimposed meshes in complex geometries. By firing rays along each coordinate direction through the geometry, the approach accumulates track-length data in each mesh element, thereby determining the fractional composition of each material. Storing the accumulated track-length data using an open-addressed hash table minimizes the potential memory footprint and, when paired with lock-free atomic compare-and-swap probing, removes thread contention to enable efficient parallel execution. Scaling studies on three different models—a random tetrahedra configuration, the Frascati Neutron Generator ITER dose rate benchmark, and a stellarator design—show excellent parallel performance, with nearly linear speedup on modern multi-threaded and distributed-memory systems. An analysis of the residual error relative to high-resolution reference solutions demonstrated that under optimal conditions it decreases as 1/<span><math><mi>R</mi></math></span>, where <span><math><mi>R</mi></math></span> is the number of rays fired, making it straightforward to achieve user-prescribed accuracy. This new functionality enables practical, mesh-based approaches for detailed nuclear analyses in production Monte Carlo workflows without resorting to expensive, fully conformal or unstructured meshing.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"220 ","pages":"Article 115364"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing material volume fractions on a superimposed mesh as applied to Monte Carlo particle transport simulations\",\"authors\":\"Paul K. Romano ,&nbsp;Samuel Pasmann ,&nbsp;Patrick C. Shriwise ,&nbsp;Charles P.S. Swanson\",\"doi\":\"10.1016/j.fusengdes.2025.115364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a newly implemented ray tracing algorithm in OpenMC for efficiently computing material volume fractions on superimposed meshes in complex geometries. By firing rays along each coordinate direction through the geometry, the approach accumulates track-length data in each mesh element, thereby determining the fractional composition of each material. Storing the accumulated track-length data using an open-addressed hash table minimizes the potential memory footprint and, when paired with lock-free atomic compare-and-swap probing, removes thread contention to enable efficient parallel execution. Scaling studies on three different models—a random tetrahedra configuration, the Frascati Neutron Generator ITER dose rate benchmark, and a stellarator design—show excellent parallel performance, with nearly linear speedup on modern multi-threaded and distributed-memory systems. An analysis of the residual error relative to high-resolution reference solutions demonstrated that under optimal conditions it decreases as 1/<span><math><mi>R</mi></math></span>, where <span><math><mi>R</mi></math></span> is the number of rays fired, making it straightforward to achieve user-prescribed accuracy. This new functionality enables practical, mesh-based approaches for detailed nuclear analyses in production Monte Carlo workflows without resorting to expensive, fully conformal or unstructured meshing.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"220 \",\"pages\":\"Article 115364\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625005605\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625005605","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们在OpenMC中提出了一种新实现的光线追踪算法,用于在复杂几何形状的叠加网格上有效地计算材料体积分数。通过沿几何图形的每个坐标方向发射射线,该方法在每个网格元素中积累轨迹长度数据,从而确定每种材料的分数组成。使用开放寻址哈希表存储累积的轨迹长度数据可以最大限度地减少潜在的内存占用,并且当与无锁的原子比较与交换探测配对时,可以消除线程争用,从而实现高效的并行执行。对三种不同模型(随机四面体配置、弗拉斯卡蒂中子发生器ITER剂量率基准和仿星器设计)的缩放研究表明,在现代多线程和分布式存储系统上,并行性能优异,加速速度接近线性。相对于高分辨率参考解决方案的剩余误差分析表明,在最佳条件下,它以1/R减小,其中R是发射的射线数,使其直接达到用户规定的精度。这种新功能使实用的、基于网格的方法能够在生产蒙特卡罗工作流程中进行详细的核分析,而无需采用昂贵的、完全保形或非结构化网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing material volume fractions on a superimposed mesh as applied to Monte Carlo particle transport simulations
We present a newly implemented ray tracing algorithm in OpenMC for efficiently computing material volume fractions on superimposed meshes in complex geometries. By firing rays along each coordinate direction through the geometry, the approach accumulates track-length data in each mesh element, thereby determining the fractional composition of each material. Storing the accumulated track-length data using an open-addressed hash table minimizes the potential memory footprint and, when paired with lock-free atomic compare-and-swap probing, removes thread contention to enable efficient parallel execution. Scaling studies on three different models—a random tetrahedra configuration, the Frascati Neutron Generator ITER dose rate benchmark, and a stellarator design—show excellent parallel performance, with nearly linear speedup on modern multi-threaded and distributed-memory systems. An analysis of the residual error relative to high-resolution reference solutions demonstrated that under optimal conditions it decreases as 1/R, where R is the number of rays fired, making it straightforward to achieve user-prescribed accuracy. This new functionality enables practical, mesh-based approaches for detailed nuclear analyses in production Monte Carlo workflows without resorting to expensive, fully conformal or unstructured meshing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信