{"title":"以最小完工时间为目标的周期性维护单机调度问题的分支价格算法","authors":"Aiyue Fei , Qian Hu , Ying Liu","doi":"10.1016/j.cor.2025.107214","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic maintenance of machines is essential to prevent unexpected breakdowns and ensure safe and reliable production. In this paper, we address the single machine scheduling problem with periodic maintenance, where a set of jobs must be processed sequentially on a single machine that requires periodic maintenance, with the objective of minimizing makespan. We first formulate this problem as a set partitioning model consisting of a set of integer variables and a set of continuous variables, and then develop a branch-and-price algorithm to efficiently solve the set partitioning model. In the algorithm, we design a hierarchical branching strategy to generate child nodes, a primal heuristic to quickly generate feasible solutions from fractional solutions, and a label setting algorithm with a bounding procedure to address pricing problems. Extensive computational experiments on benchmark instances and newly generated instances have been conducted to evaluate the efficiency of our branch-and-price algorithm. The results demonstrate that our algorithm solving the set partitioning model significantly outperforms the Gurobi Optimizer solving existing mathematical models in the literature, owing to our well-designed branching strategy, primal heuristic, and bounding procedure.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"184 ","pages":"Article 107214"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A branch-and-price algorithm for the single machine scheduling problem with periodic maintenance to minimize makespan\",\"authors\":\"Aiyue Fei , Qian Hu , Ying Liu\",\"doi\":\"10.1016/j.cor.2025.107214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodic maintenance of machines is essential to prevent unexpected breakdowns and ensure safe and reliable production. In this paper, we address the single machine scheduling problem with periodic maintenance, where a set of jobs must be processed sequentially on a single machine that requires periodic maintenance, with the objective of minimizing makespan. We first formulate this problem as a set partitioning model consisting of a set of integer variables and a set of continuous variables, and then develop a branch-and-price algorithm to efficiently solve the set partitioning model. In the algorithm, we design a hierarchical branching strategy to generate child nodes, a primal heuristic to quickly generate feasible solutions from fractional solutions, and a label setting algorithm with a bounding procedure to address pricing problems. Extensive computational experiments on benchmark instances and newly generated instances have been conducted to evaluate the efficiency of our branch-and-price algorithm. The results demonstrate that our algorithm solving the set partitioning model significantly outperforms the Gurobi Optimizer solving existing mathematical models in the literature, owing to our well-designed branching strategy, primal heuristic, and bounding procedure.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"184 \",\"pages\":\"Article 107214\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054825002424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825002424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A branch-and-price algorithm for the single machine scheduling problem with periodic maintenance to minimize makespan
Periodic maintenance of machines is essential to prevent unexpected breakdowns and ensure safe and reliable production. In this paper, we address the single machine scheduling problem with periodic maintenance, where a set of jobs must be processed sequentially on a single machine that requires periodic maintenance, with the objective of minimizing makespan. We first formulate this problem as a set partitioning model consisting of a set of integer variables and a set of continuous variables, and then develop a branch-and-price algorithm to efficiently solve the set partitioning model. In the algorithm, we design a hierarchical branching strategy to generate child nodes, a primal heuristic to quickly generate feasible solutions from fractional solutions, and a label setting algorithm with a bounding procedure to address pricing problems. Extensive computational experiments on benchmark instances and newly generated instances have been conducted to evaluate the efficiency of our branch-and-price algorithm. The results demonstrate that our algorithm solving the set partitioning model significantly outperforms the Gurobi Optimizer solving existing mathematical models in the literature, owing to our well-designed branching strategy, primal heuristic, and bounding procedure.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.