用于自旋轨道角动量解复用和模式检测的单层介电超表面

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Peng Zhou , Shikai Deng , Lei Chen , Xinyu Wen , Qinglin Ji , Han Ye , Yumin Liu
{"title":"用于自旋轨道角动量解复用和模式检测的单层介电超表面","authors":"Peng Zhou ,&nbsp;Shikai Deng ,&nbsp;Lei Chen ,&nbsp;Xinyu Wen ,&nbsp;Qinglin Ji ,&nbsp;Han Ye ,&nbsp;Yumin Liu","doi":"10.1016/j.physleta.2025.130859","DOIUrl":null,"url":null,"abstract":"<div><div>Spin angular momentum (SAM) and orbital angular momentum (OAM) are particularly valued in high-capacity optical communications for their spatial orthogonality. However, the intricate spatial phase distribution of the optical field carrying OAM restricts its integration into miniaturized systems. Here, we demonstrate a single-layer spin-multiplexing metasurface for spin-orbital angular momentum demultiplexing. This metasurface can spatially differentiate the state of an OAM-carrying beam based on its spin state and the topological charge. Introducing an additional helical phase enables precise focusing of the OAM beam into a Gaussian spot, markedly enhancing coupling efficiency into single-mode fibers. A 24-channel spin-orbital angular momentum demultiplexing system is demonstrated using the proposed method. Furthermore, a staggered design can achieve spin-orbital angular momentum demultiplexing of the same channel in a smaller footprint. The proposed method offers a straightforward and effective approach for spin-orbital angular momentum demultiplexing, holding substantial potential for advancing high-capacity optical communication applications.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"557 ","pages":"Article 130859"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-layer dielectric metasurface for spin-orbital angular momentum demultiplexing and mode detection\",\"authors\":\"Peng Zhou ,&nbsp;Shikai Deng ,&nbsp;Lei Chen ,&nbsp;Xinyu Wen ,&nbsp;Qinglin Ji ,&nbsp;Han Ye ,&nbsp;Yumin Liu\",\"doi\":\"10.1016/j.physleta.2025.130859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spin angular momentum (SAM) and orbital angular momentum (OAM) are particularly valued in high-capacity optical communications for their spatial orthogonality. However, the intricate spatial phase distribution of the optical field carrying OAM restricts its integration into miniaturized systems. Here, we demonstrate a single-layer spin-multiplexing metasurface for spin-orbital angular momentum demultiplexing. This metasurface can spatially differentiate the state of an OAM-carrying beam based on its spin state and the topological charge. Introducing an additional helical phase enables precise focusing of the OAM beam into a Gaussian spot, markedly enhancing coupling efficiency into single-mode fibers. A 24-channel spin-orbital angular momentum demultiplexing system is demonstrated using the proposed method. Furthermore, a staggered design can achieve spin-orbital angular momentum demultiplexing of the same channel in a smaller footprint. The proposed method offers a straightforward and effective approach for spin-orbital angular momentum demultiplexing, holding substantial potential for advancing high-capacity optical communication applications.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"557 \",\"pages\":\"Article 130859\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125006395\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125006395","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋角动量(SAM)和轨道角动量(OAM)因其空间正交性在大容量光通信中具有重要的应用价值。然而,携带OAM的光场复杂的空间相位分布限制了其集成到小型化系统中。在这里,我们展示了用于自旋轨道角动量解复用的单层自旋多路复用超表面。该超表面可以根据载oam光束的自旋态和拓扑电荷在空间上区分载oam光束的状态。引入额外的螺旋相位可以使OAM光束精确聚焦到高斯光斑,显著提高单模光纤的耦合效率。利用该方法演示了一个24通道自旋轨道角动量解复用系统。此外,交错设计可以在较小的占用空间内实现相同信道的自旋轨道角动量解复用。该方法为自旋轨道角动量解复用提供了一种简单有效的方法,在推进大容量光通信应用方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-layer dielectric metasurface for spin-orbital angular momentum demultiplexing and mode detection
Spin angular momentum (SAM) and orbital angular momentum (OAM) are particularly valued in high-capacity optical communications for their spatial orthogonality. However, the intricate spatial phase distribution of the optical field carrying OAM restricts its integration into miniaturized systems. Here, we demonstrate a single-layer spin-multiplexing metasurface for spin-orbital angular momentum demultiplexing. This metasurface can spatially differentiate the state of an OAM-carrying beam based on its spin state and the topological charge. Introducing an additional helical phase enables precise focusing of the OAM beam into a Gaussian spot, markedly enhancing coupling efficiency into single-mode fibers. A 24-channel spin-orbital angular momentum demultiplexing system is demonstrated using the proposed method. Furthermore, a staggered design can achieve spin-orbital angular momentum demultiplexing of the same channel in a smaller footprint. The proposed method offers a straightforward and effective approach for spin-orbital angular momentum demultiplexing, holding substantial potential for advancing high-capacity optical communication applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信