用多边形有限元法进行稳态和瞬态热应力分析

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Yang Yang , Mingjiao Yan , Zongliang Zhang , Dengmiao Hao , Xuedong Chen , Weixiong Chen
{"title":"用多边形有限元法进行稳态和瞬态热应力分析","authors":"Yang Yang ,&nbsp;Mingjiao Yan ,&nbsp;Zongliang Zhang ,&nbsp;Dengmiao Hao ,&nbsp;Xuedong Chen ,&nbsp;Weixiong Chen","doi":"10.1016/j.finel.2025.104413","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a polygonal finite element method (PFEM) for the analysis of steady-state and transient thermal stresses in two-dimensional continua. The method employs Wachspress rational basis functions to construct conforming interpolations over arbitrary convex polygonal meshes, providing enhanced geometric flexibility and accuracy in capturing complex boundary conditions and heterogeneous material behavior. A quadtree-based acceleration strategy is introduced to significantly reduce computational cost through the reuse of precomputed stiffness and mass matrices. The PFEM is implemented in ABAQUS via a user-defined element (UEL) framework. Comprehensive benchmark problems, including multi-scale and non-matching mesh scenarios, are conducted to verify the accuracy, convergence properties, and computational efficiency of the method. Results indicate that the PFEM offers notable advantages over conventional FEM in terms of mesh adaptability, solution quality, and runtime performance. The method shows strong potential for large-scale simulations involving thermal–mechanical coupling, complex geometries, and multi-resolution modeling.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104413"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state and transient thermal stress analysis using a polygonal finite element method\",\"authors\":\"Yang Yang ,&nbsp;Mingjiao Yan ,&nbsp;Zongliang Zhang ,&nbsp;Dengmiao Hao ,&nbsp;Xuedong Chen ,&nbsp;Weixiong Chen\",\"doi\":\"10.1016/j.finel.2025.104413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a polygonal finite element method (PFEM) for the analysis of steady-state and transient thermal stresses in two-dimensional continua. The method employs Wachspress rational basis functions to construct conforming interpolations over arbitrary convex polygonal meshes, providing enhanced geometric flexibility and accuracy in capturing complex boundary conditions and heterogeneous material behavior. A quadtree-based acceleration strategy is introduced to significantly reduce computational cost through the reuse of precomputed stiffness and mass matrices. The PFEM is implemented in ABAQUS via a user-defined element (UEL) framework. Comprehensive benchmark problems, including multi-scale and non-matching mesh scenarios, are conducted to verify the accuracy, convergence properties, and computational efficiency of the method. Results indicate that the PFEM offers notable advantages over conventional FEM in terms of mesh adaptability, solution quality, and runtime performance. The method shows strong potential for large-scale simulations involving thermal–mechanical coupling, complex geometries, and multi-resolution modeling.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"251 \",\"pages\":\"Article 104413\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25001027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于二维连续体中稳态和瞬态热应力分析的多边形有限元方法。该方法采用Wachspress有理基函数在任意凸多边形网格上构造一致性插值,提高了捕获复杂边界条件和非均质材料行为的几何灵活性和精度。提出了一种基于四叉树的加速策略,通过重用预先计算的刚度矩阵和质量矩阵,大大降低了计算成本。PFEM通过用户定义元素(UEL)框架在ABAQUS中实现。通过多尺度和非匹配网格场景的综合基准测试,验证了该方法的准确性、收敛性和计算效率。结果表明,PFEM在网格适应性、求解质量和运行性能等方面均优于传统有限元法。该方法在涉及热-机械耦合、复杂几何和多分辨率建模的大规模模拟中显示出强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady-state and transient thermal stress analysis using a polygonal finite element method
This work presents a polygonal finite element method (PFEM) for the analysis of steady-state and transient thermal stresses in two-dimensional continua. The method employs Wachspress rational basis functions to construct conforming interpolations over arbitrary convex polygonal meshes, providing enhanced geometric flexibility and accuracy in capturing complex boundary conditions and heterogeneous material behavior. A quadtree-based acceleration strategy is introduced to significantly reduce computational cost through the reuse of precomputed stiffness and mass matrices. The PFEM is implemented in ABAQUS via a user-defined element (UEL) framework. Comprehensive benchmark problems, including multi-scale and non-matching mesh scenarios, are conducted to verify the accuracy, convergence properties, and computational efficiency of the method. Results indicate that the PFEM offers notable advantages over conventional FEM in terms of mesh adaptability, solution quality, and runtime performance. The method shows strong potential for large-scale simulations involving thermal–mechanical coupling, complex geometries, and multi-resolution modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信