基于显微图像的多孔岩土材料孔径分布测量方法的改进

IF 4.4 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shijia Ma, Jiangfeng Liu, Zhipeng Wang, Ruinian Sun, Xinyue Zhang, Hongyang Ni
{"title":"基于显微图像的多孔岩土材料孔径分布测量方法的改进","authors":"Shijia Ma,&nbsp;Jiangfeng Liu,&nbsp;Zhipeng Wang,&nbsp;Ruinian Sun,&nbsp;Xinyue Zhang,&nbsp;Hongyang Ni","doi":"10.1016/j.cageo.2025.106017","DOIUrl":null,"url":null,"abstract":"<div><div>Pore size distribution (PSD) is vital for characterizing microscopic information and fluid transport in geomaterials, but traditional methods struggle with irregular pore shapes and digital imaging errors, often leading to inaccurate results. This study presents an improved morphological transformation-based algorithm that iteratively fills voids with maximal circles or spheres and introduces an optimized scheme for small-pore representation, significantly reducing measurement errors. Validation on eight 2D scanning electron microscope and six 3D computer tomography images shows the proposed method achieves up to 67 % lower relative error for small pore sizes and produces permeability predictions with a mean deviation within 3 % of experimental values, outperforming established techniques. Statistical analysis confirms that, for most samples, predicted permeability values fall within or approaching the 95 % confidence interval of measured data, demonstrating robust consistency across imaging sources and magnifications. Furthermore, the quantitative evaluation of pore geometry and PSD curves using different methods reveals that complex and randomly distributed pore geometries strongly influence PSD curve morphology, underscoring the importance of geometric characterization. These advancements enable more reliable and repeatable pore structure quantification, offering practical value for geoscience and engineering applications.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"205 ","pages":"Article 106017"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved method for pore size distribution measurement of porous geomaterials based on microscopic images\",\"authors\":\"Shijia Ma,&nbsp;Jiangfeng Liu,&nbsp;Zhipeng Wang,&nbsp;Ruinian Sun,&nbsp;Xinyue Zhang,&nbsp;Hongyang Ni\",\"doi\":\"10.1016/j.cageo.2025.106017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pore size distribution (PSD) is vital for characterizing microscopic information and fluid transport in geomaterials, but traditional methods struggle with irregular pore shapes and digital imaging errors, often leading to inaccurate results. This study presents an improved morphological transformation-based algorithm that iteratively fills voids with maximal circles or spheres and introduces an optimized scheme for small-pore representation, significantly reducing measurement errors. Validation on eight 2D scanning electron microscope and six 3D computer tomography images shows the proposed method achieves up to 67 % lower relative error for small pore sizes and produces permeability predictions with a mean deviation within 3 % of experimental values, outperforming established techniques. Statistical analysis confirms that, for most samples, predicted permeability values fall within or approaching the 95 % confidence interval of measured data, demonstrating robust consistency across imaging sources and magnifications. Furthermore, the quantitative evaluation of pore geometry and PSD curves using different methods reveals that complex and randomly distributed pore geometries strongly influence PSD curve morphology, underscoring the importance of geometric characterization. These advancements enable more reliable and repeatable pore structure quantification, offering practical value for geoscience and engineering applications.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"205 \",\"pages\":\"Article 106017\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300425001670\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425001670","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

孔隙尺寸分布(PSD)对于表征岩土材料的微观信息和流体运移至关重要,但传统的方法难以处理不规则的孔隙形状和数字成像误差,往往导致结果不准确。本研究提出了一种改进的基于形态变换的算法,该算法迭代地用最大的圆或球填充空隙,并引入了一种优化的小孔隙表示方案,显著降低了测量误差。在8张二维扫描电镜和6张三维计算机断层扫描图像上的验证表明,该方法在小孔隙尺寸下的相对误差降低了67%,渗透率预测的平均偏差在实验值的3%以内,优于现有技术。统计分析证实,对于大多数样品,预测渗透率值落在或接近测量数据的95%置信区间内,显示出不同成像源和放大倍数的强大一致性。此外,利用不同的方法对孔隙几何形状和PSD曲线进行定量评价,揭示了复杂和随机分布的孔隙几何形状对PSD曲线形态的强烈影响,强调了几何表征的重要性。这些进步使孔隙结构量化更加可靠和可重复,为地球科学和工程应用提供了实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved method for pore size distribution measurement of porous geomaterials based on microscopic images
Pore size distribution (PSD) is vital for characterizing microscopic information and fluid transport in geomaterials, but traditional methods struggle with irregular pore shapes and digital imaging errors, often leading to inaccurate results. This study presents an improved morphological transformation-based algorithm that iteratively fills voids with maximal circles or spheres and introduces an optimized scheme for small-pore representation, significantly reducing measurement errors. Validation on eight 2D scanning electron microscope and six 3D computer tomography images shows the proposed method achieves up to 67 % lower relative error for small pore sizes and produces permeability predictions with a mean deviation within 3 % of experimental values, outperforming established techniques. Statistical analysis confirms that, for most samples, predicted permeability values fall within or approaching the 95 % confidence interval of measured data, demonstrating robust consistency across imaging sources and magnifications. Furthermore, the quantitative evaluation of pore geometry and PSD curves using different methods reveals that complex and randomly distributed pore geometries strongly influence PSD curve morphology, underscoring the importance of geometric characterization. These advancements enable more reliable and repeatable pore structure quantification, offering practical value for geoscience and engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信