Charles S. Dai, Avanish Mishra, Jon Edd, Mehmet Toner, Shyamala Maheswaran, Daniel A. Haber
{"title":"循环肿瘤细胞:血液检测、分子生物学和临床应用","authors":"Charles S. Dai, Avanish Mishra, Jon Edd, Mehmet Toner, Shyamala Maheswaran, Daniel A. Haber","doi":"10.1016/j.ccell.2025.07.008","DOIUrl":null,"url":null,"abstract":"Circulating tumor cells (CTCs) are cancer cells, shed from primary tumors or metastases into the bloodstream. The first non-invasive “liquid biopsy” for cancer monitoring, CTCs have been largely surpassed by circulating tumor DNA (ctDNA) for clinical applications, given the ease of DNA sequencing without specialized cell isolation methods. However, emerging rare cell capture technologies that can process larger blood volumes and enable advanced single-cell analyses may enhance the range and potential of CTC-based biomarkers. CTCs are increasingly valuable for assessing tumor heterogeneity, guiding protein biomarker-driven cancer immune therapies, and assessing heterogeneous drug resistance, as well as for detecting minimal disease. CTCs, thus, remain central to understanding cancer dissemination and are poised to offer complementary diagnostic roles in the application of minimally invasive liquid biopsies for cancer. Here, we review recent advances in the study of these rare circulating cancer cells and discuss current limitations and future directions.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"15 1","pages":""},"PeriodicalIF":44.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulating tumor cells: Blood-based detection, molecular biology, and clinical applications\",\"authors\":\"Charles S. Dai, Avanish Mishra, Jon Edd, Mehmet Toner, Shyamala Maheswaran, Daniel A. Haber\",\"doi\":\"10.1016/j.ccell.2025.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circulating tumor cells (CTCs) are cancer cells, shed from primary tumors or metastases into the bloodstream. The first non-invasive “liquid biopsy” for cancer monitoring, CTCs have been largely surpassed by circulating tumor DNA (ctDNA) for clinical applications, given the ease of DNA sequencing without specialized cell isolation methods. However, emerging rare cell capture technologies that can process larger blood volumes and enable advanced single-cell analyses may enhance the range and potential of CTC-based biomarkers. CTCs are increasingly valuable for assessing tumor heterogeneity, guiding protein biomarker-driven cancer immune therapies, and assessing heterogeneous drug resistance, as well as for detecting minimal disease. CTCs, thus, remain central to understanding cancer dissemination and are poised to offer complementary diagnostic roles in the application of minimally invasive liquid biopsies for cancer. Here, we review recent advances in the study of these rare circulating cancer cells and discuss current limitations and future directions.\",\"PeriodicalId\":9670,\"journal\":{\"name\":\"Cancer Cell\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":44.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ccell.2025.07.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.07.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Circulating tumor cells: Blood-based detection, molecular biology, and clinical applications
Circulating tumor cells (CTCs) are cancer cells, shed from primary tumors or metastases into the bloodstream. The first non-invasive “liquid biopsy” for cancer monitoring, CTCs have been largely surpassed by circulating tumor DNA (ctDNA) for clinical applications, given the ease of DNA sequencing without specialized cell isolation methods. However, emerging rare cell capture technologies that can process larger blood volumes and enable advanced single-cell analyses may enhance the range and potential of CTC-based biomarkers. CTCs are increasingly valuable for assessing tumor heterogeneity, guiding protein biomarker-driven cancer immune therapies, and assessing heterogeneous drug resistance, as well as for detecting minimal disease. CTCs, thus, remain central to understanding cancer dissemination and are poised to offer complementary diagnostic roles in the application of minimally invasive liquid biopsies for cancer. Here, we review recent advances in the study of these rare circulating cancer cells and discuss current limitations and future directions.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.