多方侵占纠葛

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-30 DOI:10.22331/q-2025-07-30-1818
Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming
{"title":"多方侵占纠葛","authors":"Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming","doi":"10.22331/q-2025-07-30-1818","DOIUrl":null,"url":null,"abstract":"Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication while perturbing the resource arbitrarily little. Recently, the existence of embezzling states of bipartite systems of type III von Neumann algebras was shown. However, both the multipartite case and the precise relation between embezzling states and the notion of embezzling families, as originally defined by van Dam and Hayden, was left open. Here, we show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families. In contrast, not every embezzling family converges to an embezzling state. We identify an additional consistency condition that ensures that an embezzling family converges to an embezzling state. This criterion distinguishes the embezzling family of van Dam and Hayden from the one by Leung, Toner, and Watrous. The latter generalizes to the multipartite setting. By taking a limit, we obtain a multipartite system of commuting type III$_1$ factors on which every state is an embezzling state. We discuss our results in the context of quantum field theory and quantum many-body physics. As open problems, we ask whether vacua of relativistic quantum fields in more than two spacetime dimensions are multipartite embezzling states and whether multipartite embezzlement allows for an operator-algebraic characterization.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"26 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipartite Embezzlement of Entanglement\",\"authors\":\"Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming\",\"doi\":\"10.22331/q-2025-07-30-1818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication while perturbing the resource arbitrarily little. Recently, the existence of embezzling states of bipartite systems of type III von Neumann algebras was shown. However, both the multipartite case and the precise relation between embezzling states and the notion of embezzling families, as originally defined by van Dam and Hayden, was left open. Here, we show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families. In contrast, not every embezzling family converges to an embezzling state. We identify an additional consistency condition that ensures that an embezzling family converges to an embezzling state. This criterion distinguishes the embezzling family of van Dam and Hayden from the one by Leung, Toner, and Watrous. The latter generalizes to the multipartite setting. By taking a limit, we obtain a multipartite system of commuting type III$_1$ factors on which every state is an embezzling state. We discuss our results in the context of quantum field theory and quantum many-body physics. As open problems, we ask whether vacua of relativistic quantum fields in more than two spacetime dimensions are multipartite embezzling states and whether multipartite embezzlement allows for an operator-algebraic characterization.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-30-1818\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-30-1818","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纠缠挪用是指在不进行通信的情况下,通过局部操作从纠缠资源中提取纠缠,同时对资源的干扰微乎其微。最近,证明了III型von Neumann代数的二部系统的侵吞状态的存在性。然而,凡·达姆和海登最初定义的贪污国家与贪污家庭的概念之间的多重情况和确切关系都是开放的。在这里,我们证明了多部盗用状态的有限维近似形成了多部盗用族。相反,并不是每个贪污家庭都会变成贪污国家。我们确定了一个额外的一致性条件,以确保盗用族收敛到盗用状态。这一标准将范·达姆和海登的贪污家族与梁、托纳和沃特劳斯的贪污家族区别开来。后者推广到多方设置。通过取一个极限,我们得到了一个可交换型III$_1$因子的多部系统,其中每个状态都是侵夺状态。我们在量子场论和量子多体物理的背景下讨论我们的结果。作为开放问题,我们提出了两个以上时空维度的相对论量子场的真空是否是多部盗用状态,以及多部盗用是否允许算子-代数表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipartite Embezzlement of Entanglement
Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication while perturbing the resource arbitrarily little. Recently, the existence of embezzling states of bipartite systems of type III von Neumann algebras was shown. However, both the multipartite case and the precise relation between embezzling states and the notion of embezzling families, as originally defined by van Dam and Hayden, was left open. Here, we show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families. In contrast, not every embezzling family converges to an embezzling state. We identify an additional consistency condition that ensures that an embezzling family converges to an embezzling state. This criterion distinguishes the embezzling family of van Dam and Hayden from the one by Leung, Toner, and Watrous. The latter generalizes to the multipartite setting. By taking a limit, we obtain a multipartite system of commuting type III$_1$ factors on which every state is an embezzling state. We discuss our results in the context of quantum field theory and quantum many-body physics. As open problems, we ask whether vacua of relativistic quantum fields in more than two spacetime dimensions are multipartite embezzling states and whether multipartite embezzlement allows for an operator-algebraic characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信