{"title":"改性橡胶水泥稳定土力学性能及损伤演化研究","authors":"Jiaming Yuan, Dongdong Ma, Chao Li","doi":"10.1177/10567895251357959","DOIUrl":null,"url":null,"abstract":"Two modification approaches, namely vacuum heating and cement precoating, were applied to optimize the bulk hardening and surface treatment of rubber particles. The physicochemical characteristics of vacuum-heated modified rubber underwent comprehensive evaluation through rubber hardness testing, water contact angle assessments, and Fourier transform infrared spectroscopy. Unconfined compressive strength (UCS) tests combined with digital image correlation techniques were utilized to evaluate the strength improvement and damage evolution mechanism in modified rubber cement stabilized soil (RCS) specimens, while scanning electron microscopy was used to further characterize the microstructural failure mechanisms of modified RCS. The effectiveness of both methods was validated through significance analysis and nonlinear surface fitting of RCS strength data under varying modification parameters. Experimental results revealed that vacuum heating elevated rubber hardness by 34.6% and decreased water contact angle by 16.1° relative to untreated controls, significantly enhancing the UCS of RCS. The vacuum heating method could improve the cohesive properties and structural continuity of specimens, whereas cement precoated samples achieved strength gains without sacrificing material toughness. Both of the above two methods successfully facilitated rubber particle integration within the cement-stabilized soil matrix.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"137 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on mechanical properties and damage evolution of modified rubberized cement stabilized soil\",\"authors\":\"Jiaming Yuan, Dongdong Ma, Chao Li\",\"doi\":\"10.1177/10567895251357959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two modification approaches, namely vacuum heating and cement precoating, were applied to optimize the bulk hardening and surface treatment of rubber particles. The physicochemical characteristics of vacuum-heated modified rubber underwent comprehensive evaluation through rubber hardness testing, water contact angle assessments, and Fourier transform infrared spectroscopy. Unconfined compressive strength (UCS) tests combined with digital image correlation techniques were utilized to evaluate the strength improvement and damage evolution mechanism in modified rubber cement stabilized soil (RCS) specimens, while scanning electron microscopy was used to further characterize the microstructural failure mechanisms of modified RCS. The effectiveness of both methods was validated through significance analysis and nonlinear surface fitting of RCS strength data under varying modification parameters. Experimental results revealed that vacuum heating elevated rubber hardness by 34.6% and decreased water contact angle by 16.1° relative to untreated controls, significantly enhancing the UCS of RCS. The vacuum heating method could improve the cohesive properties and structural continuity of specimens, whereas cement precoated samples achieved strength gains without sacrificing material toughness. Both of the above two methods successfully facilitated rubber particle integration within the cement-stabilized soil matrix.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895251357959\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251357959","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on mechanical properties and damage evolution of modified rubberized cement stabilized soil
Two modification approaches, namely vacuum heating and cement precoating, were applied to optimize the bulk hardening and surface treatment of rubber particles. The physicochemical characteristics of vacuum-heated modified rubber underwent comprehensive evaluation through rubber hardness testing, water contact angle assessments, and Fourier transform infrared spectroscopy. Unconfined compressive strength (UCS) tests combined with digital image correlation techniques were utilized to evaluate the strength improvement and damage evolution mechanism in modified rubber cement stabilized soil (RCS) specimens, while scanning electron microscopy was used to further characterize the microstructural failure mechanisms of modified RCS. The effectiveness of both methods was validated through significance analysis and nonlinear surface fitting of RCS strength data under varying modification parameters. Experimental results revealed that vacuum heating elevated rubber hardness by 34.6% and decreased water contact angle by 16.1° relative to untreated controls, significantly enhancing the UCS of RCS. The vacuum heating method could improve the cohesive properties and structural continuity of specimens, whereas cement precoated samples achieved strength gains without sacrificing material toughness. Both of the above two methods successfully facilitated rubber particle integration within the cement-stabilized soil matrix.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).