微结构可调的小梁骨条件生成扩散模型。

X Wang, G Shi, A Sivakumar, T Ye, A Sylvester, J W Stayman, W Zbijewski
{"title":"微结构可调的小梁骨条件生成扩散模型。","authors":"X Wang, G Shi, A Sivakumar, T Ye, A Sylvester, J W Stayman, W Zbijewski","doi":"10.1117/12.3049125","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We developed a generative model capable of producing synthetic trabecular bone that can be precisely tuned to achieve specific structural characteristics, such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and spacing (Tb.Sp).</p><p><strong>Methods: </strong>The generative model is based on Diffusion Transformers (DiT), a latent diffusion approach employing a transformer architecture in the denoising network. To control the microstructure characteristics of the synthetic trabecular bone samples, the model is conditioned on BV/TV, Tb.Th, and Tb.Sp. The training data involved 29898 256×256-pixel Regions of Interest (ROIs) extracted from micro-CT volumes ( <math><mn>50</mn> <mspace></mspace> <mi>μ</mi> <mtext>m</mtext></math> voxel size) of 20 femoral bone specimens, paired with trabecular metrics computed within each ROI; the training/validation split was 9:1. For testing, 3499 synthetic bone samples were generated over a wide range of condition (target) microstructure metrics. Results were evaluated in terms of (i) the ability to cover real-world distribution of trabecular structures (coverage), (ii) agreement with target metric values (Pearson Correlation), and (iii) consistency of the metrics across multiple realizations of the DiT model with fixed condition (Coefficient of Variation, CV).</p><p><strong>Results: </strong>The model achieved good coverage of real-world bone microstructures and visual similarity to true trabecular ROIs. Pearson Correlations against the condition (target) metric values were high: 0.9540 for BV/TV, 0.9618 for Tb.Th, and 0.9835 Tb.Sp. Microstructural characteristics of the synthetic samples were stable across DiT realizations, with CV ranging from 3.37% to 11.78% for BV/TV, 2.27% to 3.22% for Tb.Th, and 2.53% to 5.00% for Tb.Sp.</p><p><strong>Conclusion: </strong>The proposed generative model is capable of generating realistic digital trabecular bones that can be precisely tuned to achieve specified microstructural characteristics. Possible applications include virtual clinical trials of new skeletal image biomarkers and establishing priors for advanced image reconstruction.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13410 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302783/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Conditional Generative Diffusion Model of Trabecular Bone with Tunable Microstructure.\",\"authors\":\"X Wang, G Shi, A Sivakumar, T Ye, A Sylvester, J W Stayman, W Zbijewski\",\"doi\":\"10.1117/12.3049125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We developed a generative model capable of producing synthetic trabecular bone that can be precisely tuned to achieve specific structural characteristics, such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and spacing (Tb.Sp).</p><p><strong>Methods: </strong>The generative model is based on Diffusion Transformers (DiT), a latent diffusion approach employing a transformer architecture in the denoising network. To control the microstructure characteristics of the synthetic trabecular bone samples, the model is conditioned on BV/TV, Tb.Th, and Tb.Sp. The training data involved 29898 256×256-pixel Regions of Interest (ROIs) extracted from micro-CT volumes ( <math><mn>50</mn> <mspace></mspace> <mi>μ</mi> <mtext>m</mtext></math> voxel size) of 20 femoral bone specimens, paired with trabecular metrics computed within each ROI; the training/validation split was 9:1. For testing, 3499 synthetic bone samples were generated over a wide range of condition (target) microstructure metrics. Results were evaluated in terms of (i) the ability to cover real-world distribution of trabecular structures (coverage), (ii) agreement with target metric values (Pearson Correlation), and (iii) consistency of the metrics across multiple realizations of the DiT model with fixed condition (Coefficient of Variation, CV).</p><p><strong>Results: </strong>The model achieved good coverage of real-world bone microstructures and visual similarity to true trabecular ROIs. Pearson Correlations against the condition (target) metric values were high: 0.9540 for BV/TV, 0.9618 for Tb.Th, and 0.9835 Tb.Sp. Microstructural characteristics of the synthetic samples were stable across DiT realizations, with CV ranging from 3.37% to 11.78% for BV/TV, 2.27% to 3.22% for Tb.Th, and 2.53% to 5.00% for Tb.Sp.</p><p><strong>Conclusion: </strong>The proposed generative model is capable of generating realistic digital trabecular bones that can be precisely tuned to achieve specified microstructural characteristics. Possible applications include virtual clinical trials of new skeletal image biomarkers and establishing priors for advanced image reconstruction.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"13410 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302783/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3049125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3049125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们开发了一种能够生产合成骨小梁的生成模型,该模型可以精确调整以实现特定的结构特征,如骨体积分数(BV/TV),骨小梁厚度(Tb.Th)和间距(Tb.Sp)。方法:生成模型基于扩散变压器(Diffusion transformer, DiT),这是一种在去噪网络中采用变压器结构的潜在扩散方法。为了控制合成骨小梁样品的微观结构特征,模型的条件为BV/TV, Tb。这个,还有这个。训练数据涉及29898个256×256-pixel从20个股骨标本的微ct体积(50 μ m体素大小)中提取的感兴趣区域(ROI),并与每个ROI内计算的小梁指标配对;训练/验证的比例是9:1。为了进行测试,在广泛的条件(目标)微观结构指标下生成了3499个合成骨样品。评估结果的依据是:(i)覆盖小梁结构真实分布的能力(覆盖度),(ii)与目标度量值的一致性(Pearson相关性),以及(iii)固定条件下DiT模型在多个实现中的度量一致性(变异系数,CV)。结果:该模型实现了真实骨微结构的良好覆盖,视觉上与真实小梁roi相似。与条件(目标)度量值的Pearson相关性很高:BV/TV为0.9540,Tb为0.9618。Th和0.9835 Tb.Sp。合成样品的微观结构特征在DiT实现中稳定,BV/TV的变异系数为3.37% ~ 11.78%,Tb的变异系数为2.27% ~ 3.22%。结论:所提出的生成模型能够生成逼真的数字小梁骨,可以精确调整以达到特定的微观结构特征。可能的应用包括新的骨骼图像生物标志物的虚拟临床试验和建立高级图像重建的先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Conditional Generative Diffusion Model of Trabecular Bone with Tunable Microstructure.

Purpose: We developed a generative model capable of producing synthetic trabecular bone that can be precisely tuned to achieve specific structural characteristics, such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and spacing (Tb.Sp).

Methods: The generative model is based on Diffusion Transformers (DiT), a latent diffusion approach employing a transformer architecture in the denoising network. To control the microstructure characteristics of the synthetic trabecular bone samples, the model is conditioned on BV/TV, Tb.Th, and Tb.Sp. The training data involved 29898 256×256-pixel Regions of Interest (ROIs) extracted from micro-CT volumes ( 50 μ m voxel size) of 20 femoral bone specimens, paired with trabecular metrics computed within each ROI; the training/validation split was 9:1. For testing, 3499 synthetic bone samples were generated over a wide range of condition (target) microstructure metrics. Results were evaluated in terms of (i) the ability to cover real-world distribution of trabecular structures (coverage), (ii) agreement with target metric values (Pearson Correlation), and (iii) consistency of the metrics across multiple realizations of the DiT model with fixed condition (Coefficient of Variation, CV).

Results: The model achieved good coverage of real-world bone microstructures and visual similarity to true trabecular ROIs. Pearson Correlations against the condition (target) metric values were high: 0.9540 for BV/TV, 0.9618 for Tb.Th, and 0.9835 Tb.Sp. Microstructural characteristics of the synthetic samples were stable across DiT realizations, with CV ranging from 3.37% to 11.78% for BV/TV, 2.27% to 3.22% for Tb.Th, and 2.53% to 5.00% for Tb.Sp.

Conclusion: The proposed generative model is capable of generating realistic digital trabecular bones that can be precisely tuned to achieve specified microstructural characteristics. Possible applications include virtual clinical trials of new skeletal image biomarkers and establishing priors for advanced image reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信