Kristýna Šmilauerová, Martin Štach, Martin Mucha, Šárka Vaníková, Jana Rychlá, Pavel Otáhal
{"title":"通过表达WT1特异性转基因T细胞受体、GM-CSF受体嵌合抗原受体、CD33特异性双特异性T细胞接合器和tEGFR自杀基因系统的五基因工程T细胞靶向急性髓系白血病","authors":"Kristýna Šmilauerová, Martin Štach, Martin Mucha, Šárka Vaníková, Jana Rychlá, Pavel Otáhal","doi":"10.1093/immadv/ltaf022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer immunotherapy with transgenic T-cell receptor-engineered T cells (TCR-T) enables the targeting of intracellular tumor-specific antigens; in contrast, chimeric antigen receptor-modified T cells (CAR-T) mediate tumor cell killing via the recognition of surface antigens. In the case of acute myeloid leukemia, the lack of leukemia-specific surface antigens limits the efficacy of CAR-T cells; therefore, TCR-T cells may represent a more targeted immunotherapy approach. However, the tumor immunosuppressive environment eliminates the best-functioning, high-avidity TCR-T cells, thus creating a need for novel, enhanced TCR-T cells.</p><p><strong>Methods: </strong>The piggyBac transposon vector used for gene modification of T cells expresses a T-cell receptor specific to the WT1 tumour antigen, an NFAT promoter-regulated CAR specific to GM-CSF receptor, a CD3xCD33 bispecific T-cell engager, and a truncated EGFR suicide gene system. The transgenic T cells were generated by electroporation using a single expression vector, and the efficiency of these engineered TCR-T cells was evaluated using models that utilized AML cell lines and primary AML cells.</p><p><strong>Results: </strong>The NFAT-driven GM-CSF CAR significantly enhances the antileukemic activity of WT1-specific TCR-T cells, which importantly maintain specificity for their HLA/peptide antigenic complex. Next, by inserting the CD3xCD33 bispecific T-cell engager into the transposon vector, both TCR-T cells and recruited non-transfected bystander T cells can efficiently target the CD33 antigen, providing more robust antileukemic effects.</p><p><strong>Conclusion: </strong>The presented strategy, utilizing a single piggyBac transposon vector, enables the complex redirection of T-cell specificity against acute myeloid leukemia by inserting TCR, CAR, BiTE constructs, along with a tEGFR gene suicide system.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"5 1","pages":"ltaf022"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting of acute myeloid leukemia by five-gene engineered T cells expressing transgenic T-cell receptor specific to WT1, chimeric antigenic receptor specific to GM-CSF receptor, bispecific T-cell engager specific to CD33, and tEGFR suicide gene system.\",\"authors\":\"Kristýna Šmilauerová, Martin Štach, Martin Mucha, Šárka Vaníková, Jana Rychlá, Pavel Otáhal\",\"doi\":\"10.1093/immadv/ltaf022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer immunotherapy with transgenic T-cell receptor-engineered T cells (TCR-T) enables the targeting of intracellular tumor-specific antigens; in contrast, chimeric antigen receptor-modified T cells (CAR-T) mediate tumor cell killing via the recognition of surface antigens. In the case of acute myeloid leukemia, the lack of leukemia-specific surface antigens limits the efficacy of CAR-T cells; therefore, TCR-T cells may represent a more targeted immunotherapy approach. However, the tumor immunosuppressive environment eliminates the best-functioning, high-avidity TCR-T cells, thus creating a need for novel, enhanced TCR-T cells.</p><p><strong>Methods: </strong>The piggyBac transposon vector used for gene modification of T cells expresses a T-cell receptor specific to the WT1 tumour antigen, an NFAT promoter-regulated CAR specific to GM-CSF receptor, a CD3xCD33 bispecific T-cell engager, and a truncated EGFR suicide gene system. The transgenic T cells were generated by electroporation using a single expression vector, and the efficiency of these engineered TCR-T cells was evaluated using models that utilized AML cell lines and primary AML cells.</p><p><strong>Results: </strong>The NFAT-driven GM-CSF CAR significantly enhances the antileukemic activity of WT1-specific TCR-T cells, which importantly maintain specificity for their HLA/peptide antigenic complex. Next, by inserting the CD3xCD33 bispecific T-cell engager into the transposon vector, both TCR-T cells and recruited non-transfected bystander T cells can efficiently target the CD33 antigen, providing more robust antileukemic effects.</p><p><strong>Conclusion: </strong>The presented strategy, utilizing a single piggyBac transposon vector, enables the complex redirection of T-cell specificity against acute myeloid leukemia by inserting TCR, CAR, BiTE constructs, along with a tEGFR gene suicide system.</p>\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":\"5 1\",\"pages\":\"ltaf022\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltaf022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltaf022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Targeting of acute myeloid leukemia by five-gene engineered T cells expressing transgenic T-cell receptor specific to WT1, chimeric antigenic receptor specific to GM-CSF receptor, bispecific T-cell engager specific to CD33, and tEGFR suicide gene system.
Background: Cancer immunotherapy with transgenic T-cell receptor-engineered T cells (TCR-T) enables the targeting of intracellular tumor-specific antigens; in contrast, chimeric antigen receptor-modified T cells (CAR-T) mediate tumor cell killing via the recognition of surface antigens. In the case of acute myeloid leukemia, the lack of leukemia-specific surface antigens limits the efficacy of CAR-T cells; therefore, TCR-T cells may represent a more targeted immunotherapy approach. However, the tumor immunosuppressive environment eliminates the best-functioning, high-avidity TCR-T cells, thus creating a need for novel, enhanced TCR-T cells.
Methods: The piggyBac transposon vector used for gene modification of T cells expresses a T-cell receptor specific to the WT1 tumour antigen, an NFAT promoter-regulated CAR specific to GM-CSF receptor, a CD3xCD33 bispecific T-cell engager, and a truncated EGFR suicide gene system. The transgenic T cells were generated by electroporation using a single expression vector, and the efficiency of these engineered TCR-T cells was evaluated using models that utilized AML cell lines and primary AML cells.
Results: The NFAT-driven GM-CSF CAR significantly enhances the antileukemic activity of WT1-specific TCR-T cells, which importantly maintain specificity for their HLA/peptide antigenic complex. Next, by inserting the CD3xCD33 bispecific T-cell engager into the transposon vector, both TCR-T cells and recruited non-transfected bystander T cells can efficiently target the CD33 antigen, providing more robust antileukemic effects.
Conclusion: The presented strategy, utilizing a single piggyBac transposon vector, enables the complex redirection of T-cell specificity against acute myeloid leukemia by inserting TCR, CAR, BiTE constructs, along with a tEGFR gene suicide system.