Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky
{"title":"BioAug-Net:一个生物图像传感器驱动的注意力增强分割框架与生理耦合,用于早期前列腺癌的t2加权MRI检测。","authors":"Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky","doi":"10.1186/s13040-025-00467-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"49"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309236/pdf/","citationCount":"0","resultStr":"{\"title\":\"BioAug-Net: a bioimage sensor-driven attention-augmented segmentation framework with physiological coupling for early prostate cancer detection in T2-weighted MRI.\",\"authors\":\"Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky\",\"doi\":\"10.1186/s13040-025-00467-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"49\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-025-00467-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00467-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
BioAug-Net: a bioimage sensor-driven attention-augmented segmentation framework with physiological coupling for early prostate cancer detection in T2-weighted MRI.
Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.