BioAug-Net:一个生物图像传感器驱动的注意力增强分割框架与生理耦合,用于早期前列腺癌的t2加权MRI检测。

IF 6.1 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky
{"title":"BioAug-Net:一个生物图像传感器驱动的注意力增强分割框架与生理耦合,用于早期前列腺癌的t2加权MRI检测。","authors":"Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky","doi":"10.1186/s13040-025-00467-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"49"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309236/pdf/","citationCount":"0","resultStr":"{\"title\":\"BioAug-Net: a bioimage sensor-driven attention-augmented segmentation framework with physiological coupling for early prostate cancer detection in T2-weighted MRI.\",\"authors\":\"Muhammad Arshad, Chengliang Wang, Muhammad Wajeeh Us Sima, Jamshed Ali Shaikh, Hanen Karamti, Raed Alharthi, Julius Selecky\",\"doi\":\"10.1186/s13040-025-00467-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"49\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-025-00467-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00467-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在t2加权MRI中准确分割前列腺外周带(PZ)对于前列腺癌的早期发现至关重要。现有的分割方法受到观察者之间显著的可变性(37.4±5.6%)、较差的边界定位、运动伪影的存在以及临床整合方面的挑战的阻碍。在这项研究中,我们提出了BioAug-Net,这是一个将实时生理信号反馈与MRI数据相结合的新框架,利用基于变压器的注意力机制和概率临床决策支持系统(PCDSS)。BioAug-Net具有双分支不对称注意机制:一个分支处理空间MRI特征,而另一个分支通过bigru驱动的自适应掩蔽模块整合时间传感器信号。此外,基于马尔可夫决策过程的PCDSS将分割输出映射到临床PI-RADS评分,并进行不确定性量化。我们在多机构数据集(n= 1542)上验证了BioAug-Net,并展示了最先进的性能,实现了89.7%的Dice相似系数(p < 0.001), 91.2%的灵敏度(p < 0.001), 88.4%的特异性(p < 0.001), HD95为2.14 mm (p < 0.001),优于U-Net, Attention U-Net和TransUNet。传感器集成将分割精度提高了12.6% (p < 0.001),将观察者之间的差异降低了48.3% (p < 0.001)。放射科医师评估(n=3)证实诊断时间减少了15.0% (p = 0.003),读者间一致性从K = 0.68增加到K = 0.82 (p = 0.001)。我们的研究结果表明,通过增强生理耦合和可解释的人工智能诊断,BioAug-Net为早期前列腺癌检测提供了临床可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BioAug-Net: a bioimage sensor-driven attention-augmented segmentation framework with physiological coupling for early prostate cancer detection in T2-weighted MRI.

Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信