Nasi Liu, Jurjun J S van der Velde, Sherien Ramdjielal, Esmee Koedoot, Nila K van Overbeek, Daisy Batenburg, Alfred C O Vertegaal, Bob van de Water, Sylvia E Le Dévédec
{"title":"药物CLK抑制破坏SR蛋白功能和RNA剪接,阻断TNBC细胞生长和迁移。","authors":"Nasi Liu, Jurjun J S van der Velde, Sherien Ramdjielal, Esmee Koedoot, Nila K van Overbeek, Daisy Batenburg, Alfred C O Vertegaal, Bob van de Water, Sylvia E Le Dévédec","doi":"10.1186/s13058-025-02091-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of alternative splicing plays a pivotal role in tumorigenesis and metastasis in triple-negative breast cancer (TNBC). Serine/arginine-rich (SR) proteins, essential components of the spliceosome, undergo phosphorylation by Cdc2-like kinase (CLK). Here we explored the impact of pharmacological inhibition of CLK using a novel inhibitor, T-025, on the spliceosome complex and transcriptional responses in relation to cell proliferation and migration in TNBC.</p><p><strong>Methods: </strong>We evaluated the anti-proliferative and anti-migratory efficacy of T-025 in a spectrum of TNBC cell lines. Fluorescent reporter cell lines and flowcytometry were used to determine the effect of T-025 on cell cycle. Deep RNA sequencing was performed to unravel the differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) upon T-025 treatment. Pulldown/MS was used to uncover the impact of T-025 on SRSF7 interactome. Live-cell imaging and photobleaching experiments were conducted to determine the subnuclear localization of SRSF7-GFP and its dynamic mobility.</p><p><strong>Results: </strong>T-025 exhibited a potent anti-proliferative effect in a spectrum of TNBC cell lines, particularly in highly proliferative cell lines. Treatment with T-025 induced cell cycle arrest in the G1-S phase, resulting in an increased proportion of aneuploidy cells and cells with 4 N DNA. T-025 significantly inhibited cell migration in highly migratory TNBC cell lines. Deep RNA sequencing uncovered numerous DEGs and ASGs upon T-025 treatment, which were significantly enriched in pathways related to cell division, RNA splicing and cell migration. Pulldown/MS showed that SRSF7 interacted more with nuclear-speckle-residing proteins, while less with RNA helicases and polymerases upon T-025 treatment. Enhanced interactions between SRSF7 and other phosphorylated SR proteins localized at nuclear speckles were also observed. Live-cell imaging indicated that T-025 treatment induced the accumulation of SRSF7-GFP at nuclear speckles and nuclear speckles' enlargement, restricting its protein dynamic mobility.</p><p><strong>Conclusions: </strong>CLK inhibition using T-025 leads to the accumulation of splicing factors at nuclear speckles and stalls their release to splicing sites, resulting in the RNA splicing reprogramming of a large number of genes involved in cell division, migration and RNA splicing. Our findings provide evidence that T-025 could be a promising therapeutic drug for TNBC patients.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"140"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309053/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacological CLK inhibition disrupts SR protein function and RNA splicing blocking cell growth and migration in TNBC.\",\"authors\":\"Nasi Liu, Jurjun J S van der Velde, Sherien Ramdjielal, Esmee Koedoot, Nila K van Overbeek, Daisy Batenburg, Alfred C O Vertegaal, Bob van de Water, Sylvia E Le Dévédec\",\"doi\":\"10.1186/s13058-025-02091-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dysregulation of alternative splicing plays a pivotal role in tumorigenesis and metastasis in triple-negative breast cancer (TNBC). Serine/arginine-rich (SR) proteins, essential components of the spliceosome, undergo phosphorylation by Cdc2-like kinase (CLK). Here we explored the impact of pharmacological inhibition of CLK using a novel inhibitor, T-025, on the spliceosome complex and transcriptional responses in relation to cell proliferation and migration in TNBC.</p><p><strong>Methods: </strong>We evaluated the anti-proliferative and anti-migratory efficacy of T-025 in a spectrum of TNBC cell lines. Fluorescent reporter cell lines and flowcytometry were used to determine the effect of T-025 on cell cycle. Deep RNA sequencing was performed to unravel the differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) upon T-025 treatment. Pulldown/MS was used to uncover the impact of T-025 on SRSF7 interactome. Live-cell imaging and photobleaching experiments were conducted to determine the subnuclear localization of SRSF7-GFP and its dynamic mobility.</p><p><strong>Results: </strong>T-025 exhibited a potent anti-proliferative effect in a spectrum of TNBC cell lines, particularly in highly proliferative cell lines. Treatment with T-025 induced cell cycle arrest in the G1-S phase, resulting in an increased proportion of aneuploidy cells and cells with 4 N DNA. T-025 significantly inhibited cell migration in highly migratory TNBC cell lines. Deep RNA sequencing uncovered numerous DEGs and ASGs upon T-025 treatment, which were significantly enriched in pathways related to cell division, RNA splicing and cell migration. Pulldown/MS showed that SRSF7 interacted more with nuclear-speckle-residing proteins, while less with RNA helicases and polymerases upon T-025 treatment. Enhanced interactions between SRSF7 and other phosphorylated SR proteins localized at nuclear speckles were also observed. Live-cell imaging indicated that T-025 treatment induced the accumulation of SRSF7-GFP at nuclear speckles and nuclear speckles' enlargement, restricting its protein dynamic mobility.</p><p><strong>Conclusions: </strong>CLK inhibition using T-025 leads to the accumulation of splicing factors at nuclear speckles and stalls their release to splicing sites, resulting in the RNA splicing reprogramming of a large number of genes involved in cell division, migration and RNA splicing. Our findings provide evidence that T-025 could be a promising therapeutic drug for TNBC patients.</p>\",\"PeriodicalId\":49227,\"journal\":{\"name\":\"Breast Cancer Research\",\"volume\":\"27 1\",\"pages\":\"140\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-025-02091-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-02091-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Pharmacological CLK inhibition disrupts SR protein function and RNA splicing blocking cell growth and migration in TNBC.
Background: Dysregulation of alternative splicing plays a pivotal role in tumorigenesis and metastasis in triple-negative breast cancer (TNBC). Serine/arginine-rich (SR) proteins, essential components of the spliceosome, undergo phosphorylation by Cdc2-like kinase (CLK). Here we explored the impact of pharmacological inhibition of CLK using a novel inhibitor, T-025, on the spliceosome complex and transcriptional responses in relation to cell proliferation and migration in TNBC.
Methods: We evaluated the anti-proliferative and anti-migratory efficacy of T-025 in a spectrum of TNBC cell lines. Fluorescent reporter cell lines and flowcytometry were used to determine the effect of T-025 on cell cycle. Deep RNA sequencing was performed to unravel the differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) upon T-025 treatment. Pulldown/MS was used to uncover the impact of T-025 on SRSF7 interactome. Live-cell imaging and photobleaching experiments were conducted to determine the subnuclear localization of SRSF7-GFP and its dynamic mobility.
Results: T-025 exhibited a potent anti-proliferative effect in a spectrum of TNBC cell lines, particularly in highly proliferative cell lines. Treatment with T-025 induced cell cycle arrest in the G1-S phase, resulting in an increased proportion of aneuploidy cells and cells with 4 N DNA. T-025 significantly inhibited cell migration in highly migratory TNBC cell lines. Deep RNA sequencing uncovered numerous DEGs and ASGs upon T-025 treatment, which were significantly enriched in pathways related to cell division, RNA splicing and cell migration. Pulldown/MS showed that SRSF7 interacted more with nuclear-speckle-residing proteins, while less with RNA helicases and polymerases upon T-025 treatment. Enhanced interactions between SRSF7 and other phosphorylated SR proteins localized at nuclear speckles were also observed. Live-cell imaging indicated that T-025 treatment induced the accumulation of SRSF7-GFP at nuclear speckles and nuclear speckles' enlargement, restricting its protein dynamic mobility.
Conclusions: CLK inhibition using T-025 leads to the accumulation of splicing factors at nuclear speckles and stalls their release to splicing sites, resulting in the RNA splicing reprogramming of a large number of genes involved in cell division, migration and RNA splicing. Our findings provide evidence that T-025 could be a promising therapeutic drug for TNBC patients.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.