Xiaorui Zhang, Jiao Yang, Wenting Yang, Nan Cui, Tingting Duan, Shan Li, Jing Cao, Stephen J Bush, Guoqing Tong
{"title":"母亲年龄对人类MII卵母细胞转录组的不一致影响。","authors":"Xiaorui Zhang, Jiao Yang, Wenting Yang, Nan Cui, Tingting Duan, Shan Li, Jing Cao, Stephen J Bush, Guoqing Tong","doi":"10.1093/molehr/gaaf038","DOIUrl":null,"url":null,"abstract":"<p><p>While advanced maternal age is associated with significant changes in oocyte gene expression, these are not global changes but limited to a fraction of the transcriptome. However, there is little consensus on the specific genes affected, and on the transcriptomic signatures of age-related declines in oocyte quality. To characterize the effects of age on the human MII oocyte transcriptome, here we take a two-part approach. We first generated single-oocyte Smart-seq2 datasets from 10 younger (21-29 years) and 10 older (37-43 years) donors, identifying genes differentially expressed between the two groups, then cross-referenced our results with those of 12 studies (9 human, 3 mouse) performing equivalent analyses using a variety of single-cell transcriptomic or microarray platforms. Technical differences notwithstanding, we found considerable discordance between the datasets, suggesting that age-related signatures of differential gene expression are not easily reproducible. Independent corroboration of age-associated changes in expression was limited to few genes, with the vast majority only supported by one of the 13 datasets, including our own. Nevertheless, we identified 40 genes whose expression significantly altered with age in multiple studies, highlighting common processes underlying ageing, including dysregulated proteostasis. As human Smart-seq2 oocyte libraries are challenging to procure and rare in public archives, we next implemented a meta-analytic method for their re-use, combining our 20 oocytes with 130 pre-existing libraries sourced from 12 different studies and representing a continuous age range of 18-43 years. We identified 25 genes whose expression level significantly correlated with age and corroborated 14 of these genes with RT-PCR, including the proteasomal subunits PSMA1 and PSMA2, both of which were downregulated in older oocytes. Overall, our findings are consistent with both pronounced inter-oocyte heterogeneity in transcription and with oocyte ageing being a multifactorial process to which bona fide transcriptomic changes may only play a restricted role, while proteomic changes play more pronounced roles.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discordant effects of maternal age on the human MII oocyte transcriptome.\",\"authors\":\"Xiaorui Zhang, Jiao Yang, Wenting Yang, Nan Cui, Tingting Duan, Shan Li, Jing Cao, Stephen J Bush, Guoqing Tong\",\"doi\":\"10.1093/molehr/gaaf038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While advanced maternal age is associated with significant changes in oocyte gene expression, these are not global changes but limited to a fraction of the transcriptome. However, there is little consensus on the specific genes affected, and on the transcriptomic signatures of age-related declines in oocyte quality. To characterize the effects of age on the human MII oocyte transcriptome, here we take a two-part approach. We first generated single-oocyte Smart-seq2 datasets from 10 younger (21-29 years) and 10 older (37-43 years) donors, identifying genes differentially expressed between the two groups, then cross-referenced our results with those of 12 studies (9 human, 3 mouse) performing equivalent analyses using a variety of single-cell transcriptomic or microarray platforms. Technical differences notwithstanding, we found considerable discordance between the datasets, suggesting that age-related signatures of differential gene expression are not easily reproducible. Independent corroboration of age-associated changes in expression was limited to few genes, with the vast majority only supported by one of the 13 datasets, including our own. Nevertheless, we identified 40 genes whose expression significantly altered with age in multiple studies, highlighting common processes underlying ageing, including dysregulated proteostasis. As human Smart-seq2 oocyte libraries are challenging to procure and rare in public archives, we next implemented a meta-analytic method for their re-use, combining our 20 oocytes with 130 pre-existing libraries sourced from 12 different studies and representing a continuous age range of 18-43 years. We identified 25 genes whose expression level significantly correlated with age and corroborated 14 of these genes with RT-PCR, including the proteasomal subunits PSMA1 and PSMA2, both of which were downregulated in older oocytes. Overall, our findings are consistent with both pronounced inter-oocyte heterogeneity in transcription and with oocyte ageing being a multifactorial process to which bona fide transcriptomic changes may only play a restricted role, while proteomic changes play more pronounced roles.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaaf038\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaaf038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Discordant effects of maternal age on the human MII oocyte transcriptome.
While advanced maternal age is associated with significant changes in oocyte gene expression, these are not global changes but limited to a fraction of the transcriptome. However, there is little consensus on the specific genes affected, and on the transcriptomic signatures of age-related declines in oocyte quality. To characterize the effects of age on the human MII oocyte transcriptome, here we take a two-part approach. We first generated single-oocyte Smart-seq2 datasets from 10 younger (21-29 years) and 10 older (37-43 years) donors, identifying genes differentially expressed between the two groups, then cross-referenced our results with those of 12 studies (9 human, 3 mouse) performing equivalent analyses using a variety of single-cell transcriptomic or microarray platforms. Technical differences notwithstanding, we found considerable discordance between the datasets, suggesting that age-related signatures of differential gene expression are not easily reproducible. Independent corroboration of age-associated changes in expression was limited to few genes, with the vast majority only supported by one of the 13 datasets, including our own. Nevertheless, we identified 40 genes whose expression significantly altered with age in multiple studies, highlighting common processes underlying ageing, including dysregulated proteostasis. As human Smart-seq2 oocyte libraries are challenging to procure and rare in public archives, we next implemented a meta-analytic method for their re-use, combining our 20 oocytes with 130 pre-existing libraries sourced from 12 different studies and representing a continuous age range of 18-43 years. We identified 25 genes whose expression level significantly correlated with age and corroborated 14 of these genes with RT-PCR, including the proteasomal subunits PSMA1 and PSMA2, both of which were downregulated in older oocytes. Overall, our findings are consistent with both pronounced inter-oocyte heterogeneity in transcription and with oocyte ageing being a multifactorial process to which bona fide transcriptomic changes may only play a restricted role, while proteomic changes play more pronounced roles.
期刊介绍:
MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.