小鼠毛发生长研究:脱毛对毛囊生长的同步作用。

Q4 Biochemistry, Genetics and Molecular Biology
Wei-Hung Wang, Renzhi Hou, Tyng-Shiuan Hsieh, Maksim V Plikus, Sung-Jan Lin
{"title":"小鼠毛发生长研究:脱毛对毛囊生长的同步作用。","authors":"Wei-Hung Wang, Renzhi Hou, Tyng-Shiuan Hsieh, Maksim V Plikus, Sung-Jan Lin","doi":"10.1007/7651_2025_653","DOIUrl":null,"url":null,"abstract":"<p><p>Hair follicles manifest distinct morphological, cellular, and molecular features as they progress through active growth (anagen), regression (catagen), and rest (telogen) phases of regenerative cycles. Since hair growth stalls in vitro and because numerous skin-specific murine genetic tools are readily available, studies on hair growth are commonly performed in mice in vivo. In such murine studies, it is often necessary to determine accurate hair cycle stages and to obtain large numbers of synchronized hair follicles at predefined experimental time points. These goals are hindered by the fact that natural hair growth in mice is temporally and spatially asynchronous. Thus, artificial hair growth synchronization by means of easy-to-perform hair depilation is a commonly used technique. Hair depilation rapidly resets hair cycle, such that skin with uniform anagen, catagen, or telogen hair follicles can be reliably collected from mice at specific post-depilation experimental time points. Further, progression of hair growth cycle after depilation can be monitored non-invasively in mice and compared between mutant and control mice. This is achieved through observing and recording hair pigmentation-driven changes in skin color tone. In this chapter, we discuss technical aspects of performing hair depilation procedure, commonly used experimental means for post-depilation hair growth analyses, as well as the limitations of the depilation method.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying Hair Growth in Mice: Synchronization of Hair Follicle Growth by Depilation.\",\"authors\":\"Wei-Hung Wang, Renzhi Hou, Tyng-Shiuan Hsieh, Maksim V Plikus, Sung-Jan Lin\",\"doi\":\"10.1007/7651_2025_653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hair follicles manifest distinct morphological, cellular, and molecular features as they progress through active growth (anagen), regression (catagen), and rest (telogen) phases of regenerative cycles. Since hair growth stalls in vitro and because numerous skin-specific murine genetic tools are readily available, studies on hair growth are commonly performed in mice in vivo. In such murine studies, it is often necessary to determine accurate hair cycle stages and to obtain large numbers of synchronized hair follicles at predefined experimental time points. These goals are hindered by the fact that natural hair growth in mice is temporally and spatially asynchronous. Thus, artificial hair growth synchronization by means of easy-to-perform hair depilation is a commonly used technique. Hair depilation rapidly resets hair cycle, such that skin with uniform anagen, catagen, or telogen hair follicles can be reliably collected from mice at specific post-depilation experimental time points. Further, progression of hair growth cycle after depilation can be monitored non-invasively in mice and compared between mutant and control mice. This is achieved through observing and recording hair pigmentation-driven changes in skin color tone. In this chapter, we discuss technical aspects of performing hair depilation procedure, commonly used experimental means for post-depilation hair growth analyses, as well as the limitations of the depilation method.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

毛囊在再生周期的活跃生长期(生长期)、退行期(衰退期)和休止期(休止期)中表现出不同的形态、细胞和分子特征。由于毛发生长在体外停滞不前,并且由于许多皮肤特异性小鼠遗传工具很容易获得,因此毛发生长的研究通常在小鼠体内进行。在这类小鼠研究中,通常需要确定准确的毛发周期阶段,并在预定的实验时间点获得大量同步的毛囊。这些目标受到老鼠自然毛发生长在时间和空间上不同步这一事实的阻碍。因此,通过易于执行的毛发脱毛来实现人工毛发生长同步是一种常用的技术。毛发脱毛可迅速重置毛发周期,因此,在特定的脱毛后实验时间点,可以可靠地从小鼠身上收集到具有均匀的生长期、衰退期或休止期毛囊的皮肤。此外,脱毛后毛发生长周期的进展可以在小鼠中进行无创监测,并在突变小鼠和对照小鼠之间进行比较。这是通过观察和记录头发色素驱动的皮肤色调变化来实现的。在本章中,我们讨论了执行毛发脱毛程序的技术方面,脱毛后毛发生长分析常用的实验手段,以及脱毛方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying Hair Growth in Mice: Synchronization of Hair Follicle Growth by Depilation.

Hair follicles manifest distinct morphological, cellular, and molecular features as they progress through active growth (anagen), regression (catagen), and rest (telogen) phases of regenerative cycles. Since hair growth stalls in vitro and because numerous skin-specific murine genetic tools are readily available, studies on hair growth are commonly performed in mice in vivo. In such murine studies, it is often necessary to determine accurate hair cycle stages and to obtain large numbers of synchronized hair follicles at predefined experimental time points. These goals are hindered by the fact that natural hair growth in mice is temporally and spatially asynchronous. Thus, artificial hair growth synchronization by means of easy-to-perform hair depilation is a commonly used technique. Hair depilation rapidly resets hair cycle, such that skin with uniform anagen, catagen, or telogen hair follicles can be reliably collected from mice at specific post-depilation experimental time points. Further, progression of hair growth cycle after depilation can be monitored non-invasively in mice and compared between mutant and control mice. This is achieved through observing and recording hair pigmentation-driven changes in skin color tone. In this chapter, we discuss technical aspects of performing hair depilation procedure, commonly used experimental means for post-depilation hair growth analyses, as well as the limitations of the depilation method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信