Seung Shin Park, Jongsung Noh, Jinhee Kim, Taesung Kim, Hae Jin Seo, Chang Ho Ahn, Jaegul Choo, Man Ho Choi, Jung Hee Kim
{"title":"使用临床、激素和身体成分数据的基于机器学习的肾上腺肿瘤分类。","authors":"Seung Shin Park, Jongsung Noh, Jinhee Kim, Taesung Kim, Hae Jin Seo, Chang Ho Ahn, Jaegul Choo, Man Ho Choi, Jung Hee Kim","doi":"10.1093/ejendo/lvaf145","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate diagnosis of adrenal tumors, including mild autonomous cortisol secretion (MACS), adrenal Cushing's syndrome (ACS), primary aldosteronism (PA), pheochromocytoma (PCC), and nonfunctioning adrenal adenomas (NFAs), is crucial but challenging. We aimed to develop a machine learning (ML)-based single-step diagnostic method for differentiating adrenal tumors by integrating clinical data, serum adrenal hormone profiles (SAPs), and body composition data.</p><p><strong>Methods: </strong>A total of 641 patients with adrenal tumors (MACS = 141, ACS = 64, PA = 265, PCC = 78, and NFA = 93), excluding adrenal metastases and adrenocortical carcinoma, were enrolled from Seoul National University Hospital. Patients were randomly divided into training and test cohorts at a 4:1 ratio. The ML models were developed to differentiate adrenal tumors using 32 clinical data points, 49 SAP markers, and 15 body composition data points.</p><p><strong>Results: </strong>The best-performing ML model for differentiating all 5 adrenal tumors achieved a balanced accuracy of 0.78, sensitivity of 0.77, specificity of 0.93, and area under the curve (AUC) of 0.89. To distinguish MACS, ACS, PA, and PCC from NFA, the accuracies were 0.85, 0.94, 0.78, and 0.86, with AUCs of 0.96, 0.99, 0.90, and 0.94, respectively. The ML model differentiating between NFA and the other functioning adrenal tumors exhibited an accuracy of 0.75 and an AUC of 0.79. The SAP features were identified as the most critical for differentiation, whereas body composition data contributed only minimally.</p><p><strong>Conclusions: </strong>The ML model demonstrates high diagnostic accuracy in differentiating adrenal tumor subtypes by integrating clinical data, body composition, and SAP, potentially reducing the need for invasive procedures and aiding clinical decision-making.</p>","PeriodicalId":11884,"journal":{"name":"European Journal of Endocrinology","volume":" ","pages":"204-215"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based classification of adrenal tumors using clinical, hormonal, and body composition data.\",\"authors\":\"Seung Shin Park, Jongsung Noh, Jinhee Kim, Taesung Kim, Hae Jin Seo, Chang Ho Ahn, Jaegul Choo, Man Ho Choi, Jung Hee Kim\",\"doi\":\"10.1093/ejendo/lvaf145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Accurate diagnosis of adrenal tumors, including mild autonomous cortisol secretion (MACS), adrenal Cushing's syndrome (ACS), primary aldosteronism (PA), pheochromocytoma (PCC), and nonfunctioning adrenal adenomas (NFAs), is crucial but challenging. We aimed to develop a machine learning (ML)-based single-step diagnostic method for differentiating adrenal tumors by integrating clinical data, serum adrenal hormone profiles (SAPs), and body composition data.</p><p><strong>Methods: </strong>A total of 641 patients with adrenal tumors (MACS = 141, ACS = 64, PA = 265, PCC = 78, and NFA = 93), excluding adrenal metastases and adrenocortical carcinoma, were enrolled from Seoul National University Hospital. Patients were randomly divided into training and test cohorts at a 4:1 ratio. The ML models were developed to differentiate adrenal tumors using 32 clinical data points, 49 SAP markers, and 15 body composition data points.</p><p><strong>Results: </strong>The best-performing ML model for differentiating all 5 adrenal tumors achieved a balanced accuracy of 0.78, sensitivity of 0.77, specificity of 0.93, and area under the curve (AUC) of 0.89. To distinguish MACS, ACS, PA, and PCC from NFA, the accuracies were 0.85, 0.94, 0.78, and 0.86, with AUCs of 0.96, 0.99, 0.90, and 0.94, respectively. The ML model differentiating between NFA and the other functioning adrenal tumors exhibited an accuracy of 0.75 and an AUC of 0.79. The SAP features were identified as the most critical for differentiation, whereas body composition data contributed only minimally.</p><p><strong>Conclusions: </strong>The ML model demonstrates high diagnostic accuracy in differentiating adrenal tumor subtypes by integrating clinical data, body composition, and SAP, potentially reducing the need for invasive procedures and aiding clinical decision-making.</p>\",\"PeriodicalId\":11884,\"journal\":{\"name\":\"European Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"204-215\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ejendo/lvaf145\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ejendo/lvaf145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Machine learning-based classification of adrenal tumors using clinical, hormonal, and body composition data.
Objective: Accurate diagnosis of adrenal tumors, including mild autonomous cortisol secretion (MACS), adrenal Cushing's syndrome (ACS), primary aldosteronism (PA), pheochromocytoma (PCC), and nonfunctioning adrenal adenomas (NFAs), is crucial but challenging. We aimed to develop a machine learning (ML)-based single-step diagnostic method for differentiating adrenal tumors by integrating clinical data, serum adrenal hormone profiles (SAPs), and body composition data.
Methods: A total of 641 patients with adrenal tumors (MACS = 141, ACS = 64, PA = 265, PCC = 78, and NFA = 93), excluding adrenal metastases and adrenocortical carcinoma, were enrolled from Seoul National University Hospital. Patients were randomly divided into training and test cohorts at a 4:1 ratio. The ML models were developed to differentiate adrenal tumors using 32 clinical data points, 49 SAP markers, and 15 body composition data points.
Results: The best-performing ML model for differentiating all 5 adrenal tumors achieved a balanced accuracy of 0.78, sensitivity of 0.77, specificity of 0.93, and area under the curve (AUC) of 0.89. To distinguish MACS, ACS, PA, and PCC from NFA, the accuracies were 0.85, 0.94, 0.78, and 0.86, with AUCs of 0.96, 0.99, 0.90, and 0.94, respectively. The ML model differentiating between NFA and the other functioning adrenal tumors exhibited an accuracy of 0.75 and an AUC of 0.79. The SAP features were identified as the most critical for differentiation, whereas body composition data contributed only minimally.
Conclusions: The ML model demonstrates high diagnostic accuracy in differentiating adrenal tumor subtypes by integrating clinical data, body composition, and SAP, potentially reducing the need for invasive procedures and aiding clinical decision-making.
期刊介绍:
European Journal of Endocrinology is the official journal of the European Society of Endocrinology. Its predecessor journal is Acta Endocrinologica.
The journal publishes high-quality original clinical and translational research papers and reviews in paediatric and adult endocrinology, as well as clinical practice guidelines, position statements and debates. Case reports will only be considered if they represent exceptional insights or advances in clinical endocrinology.
Topics covered include, but are not limited to, Adrenal and Steroid, Bone and Mineral Metabolism, Hormones and Cancer, Pituitary and Hypothalamus, Thyroid and Reproduction. In the field of Diabetes, Obesity and Metabolism we welcome manuscripts addressing endocrine mechanisms of disease and its complications, management of obesity/diabetes in the context of other endocrine conditions, or aspects of complex disease management. Reports may encompass natural history studies, mechanistic studies, or clinical trials.
Equal consideration is given to all manuscripts in English from any country.