骨关节炎滑膜微环境的微工程研究。

IF 2.1 4区 医学 Q3 CELL BIOLOGY
Hyon-U Pak, Daqing Wang, Jianhua Qin, Hongjing Li
{"title":"骨关节炎滑膜微环境的微工程研究。","authors":"Hyon-U Pak, Daqing Wang, Jianhua Qin, Hongjing Li","doi":"10.1080/03008207.2025.2534723","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a multifactorial joint disease characterized by cartilage degradation, subchondral bone remodeling, synovitis, and cartilage matrix degradation. The synovial membrane plays a pivotal role in the progression of OA through low-grade inflammation and secretion of catabolic enzymes under altered mechanical homeostasis. While widely used to study OA pathogenesis and therapies, in vitro models (e.g. 2D synoviocyte co-cultures) frequently lack critical aspects of the in vivo synovial microenvironment, such as cellular heterogeneity, physiologically relevant mechanical stress, and dynamic cell-matrix crosstalk. These shortcomings reduce their translational value. This translational gap indicates the need for advanced 3D microengineered platforms that integrate patient-specific cells, biomechanical elements, and real-time biosensing to bridge <i>in vitro</i> findings to clinical outcomes. Recent advances in microengineering offer innovative in vitro systems such as OA synovium-on-a-chip, 3D-printed constructs, and hydrogel-based organoids that recapitulate key features of the synovial microenvironment. These tools enable precise control over mechanical stimuli, matrix composition, and cell-cell signaling. This review summarizes the microenvironment of the OA synovium, critiques existing model systems, and highlights emerging microengineering strategies aimed at better mimicking OA pathophysiology and advancing translational research.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microengineering the synovial membrane microenvironment for osteoarthritis research.\",\"authors\":\"Hyon-U Pak, Daqing Wang, Jianhua Qin, Hongjing Li\",\"doi\":\"10.1080/03008207.2025.2534723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) is a multifactorial joint disease characterized by cartilage degradation, subchondral bone remodeling, synovitis, and cartilage matrix degradation. The synovial membrane plays a pivotal role in the progression of OA through low-grade inflammation and secretion of catabolic enzymes under altered mechanical homeostasis. While widely used to study OA pathogenesis and therapies, in vitro models (e.g. 2D synoviocyte co-cultures) frequently lack critical aspects of the in vivo synovial microenvironment, such as cellular heterogeneity, physiologically relevant mechanical stress, and dynamic cell-matrix crosstalk. These shortcomings reduce their translational value. This translational gap indicates the need for advanced 3D microengineered platforms that integrate patient-specific cells, biomechanical elements, and real-time biosensing to bridge <i>in vitro</i> findings to clinical outcomes. Recent advances in microengineering offer innovative in vitro systems such as OA synovium-on-a-chip, 3D-printed constructs, and hydrogel-based organoids that recapitulate key features of the synovial microenvironment. These tools enable precise control over mechanical stimuli, matrix composition, and cell-cell signaling. This review summarizes the microenvironment of the OA synovium, critiques existing model systems, and highlights emerging microengineering strategies aimed at better mimicking OA pathophysiology and advancing translational research.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2534723\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2534723","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎(OA)是一种以软骨退化、软骨下骨重塑、滑膜炎和软骨基质退化为特征的多因素关节疾病。在机械稳态改变的情况下,滑膜通过低级别炎症和分解代谢酶的分泌在OA的进展中起关键作用。虽然广泛用于研究OA发病机制和治疗,但体外模型(如2D滑膜细胞共培养)往往缺乏体内滑膜微环境的关键方面,如细胞异质性、生理相关的机械应力和动态细胞-基质互扰。这些缺点降低了它们的翻译价值。这种转化差距表明需要先进的3D微工程平台,将患者特异性细胞、生物力学元件和实时生物传感集成在一起,将体外研究结果与临床结果联系起来。微工程的最新进展提供了创新的体外系统,如OA滑膜芯片、3d打印结构和基于水凝胶的类器官,这些系统概括了滑膜微环境的关键特征。这些工具能够精确控制机械刺激、基质组成和细胞-细胞信号。本文总结了OA滑膜的微环境,批评了现有的模型系统,并重点介绍了旨在更好地模拟OA病理生理和推进转化研究的新兴微工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microengineering the synovial membrane microenvironment for osteoarthritis research.

Osteoarthritis (OA) is a multifactorial joint disease characterized by cartilage degradation, subchondral bone remodeling, synovitis, and cartilage matrix degradation. The synovial membrane plays a pivotal role in the progression of OA through low-grade inflammation and secretion of catabolic enzymes under altered mechanical homeostasis. While widely used to study OA pathogenesis and therapies, in vitro models (e.g. 2D synoviocyte co-cultures) frequently lack critical aspects of the in vivo synovial microenvironment, such as cellular heterogeneity, physiologically relevant mechanical stress, and dynamic cell-matrix crosstalk. These shortcomings reduce their translational value. This translational gap indicates the need for advanced 3D microengineered platforms that integrate patient-specific cells, biomechanical elements, and real-time biosensing to bridge in vitro findings to clinical outcomes. Recent advances in microengineering offer innovative in vitro systems such as OA synovium-on-a-chip, 3D-printed constructs, and hydrogel-based organoids that recapitulate key features of the synovial microenvironment. These tools enable precise control over mechanical stimuli, matrix composition, and cell-cell signaling. This review summarizes the microenvironment of the OA synovium, critiques existing model systems, and highlights emerging microengineering strategies aimed at better mimicking OA pathophysiology and advancing translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信