Autoparty:机器学习引导的分子对接结果视觉检测。

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Laura Shub, Magdalena Korczynska, Duncan F. Muir, Fang-Yu Lin, Brendan W. Hall, Alan M. Mathiowetz and Michael J. Keiser*, 
{"title":"Autoparty:机器学习引导的分子对接结果视觉检测。","authors":"Laura Shub,&nbsp;Magdalena Korczynska,&nbsp;Duncan F. Muir,&nbsp;Fang-Yu Lin,&nbsp;Brendan W. Hall,&nbsp;Alan M. Mathiowetz and Michael J. Keiser*,&nbsp;","doi":"10.1021/acs.jcim.5c00850","DOIUrl":null,"url":null,"abstract":"<p >Human inspection of potential drug compounds is crucial in the virtual drug screening pipeline. However, there is a pressing need to accelerate this process, as the number of molecules humans can realistically examine is extremely limited relative to the scale of virtual screens. Furthermore, computational medicinal chemists can evaluate different poses inconsistently, and there is no standard way of recording annotations. We propose Autoparty, a containerized tool to address these challenges. Autoparty leverages on-premises active learning for drug discovery to facilitate human-in-the-loop training of models that extrapolate human intuition. We leverage multiple uncertainty quantification metrics to query the user with informative examples for model training, limiting the number of human expert training labels. The collected annotations populate a persistent and exportable local database for broad downstream uses. Incorporating Autoparty resulted in a 40% increase in hit rate over shape similarity alone among 193 experimentally tested compounds in a real-world case study.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 15","pages":"7817–7826"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoparty: Machine Learning-Guided Visual Inspection of Molecular Docking Results\",\"authors\":\"Laura Shub,&nbsp;Magdalena Korczynska,&nbsp;Duncan F. Muir,&nbsp;Fang-Yu Lin,&nbsp;Brendan W. Hall,&nbsp;Alan M. Mathiowetz and Michael J. Keiser*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.5c00850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Human inspection of potential drug compounds is crucial in the virtual drug screening pipeline. However, there is a pressing need to accelerate this process, as the number of molecules humans can realistically examine is extremely limited relative to the scale of virtual screens. Furthermore, computational medicinal chemists can evaluate different poses inconsistently, and there is no standard way of recording annotations. We propose Autoparty, a containerized tool to address these challenges. Autoparty leverages on-premises active learning for drug discovery to facilitate human-in-the-loop training of models that extrapolate human intuition. We leverage multiple uncertainty quantification metrics to query the user with informative examples for model training, limiting the number of human expert training labels. The collected annotations populate a persistent and exportable local database for broad downstream uses. Incorporating Autoparty resulted in a 40% increase in hit rate over shape similarity alone among 193 experimentally tested compounds in a real-world case study.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 15\",\"pages\":\"7817–7826\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00850\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00850","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

人工检测潜在药物化合物在虚拟药物筛选管道中至关重要。然而,迫切需要加快这一进程,因为相对于虚拟屏幕的规模,人类可以实际检查的分子数量极其有限。此外,计算药物化学家对不同姿势的评价不一致,并且没有记录注释的标准方法。我们提出Autoparty,一个集装箱化的工具来解决这些挑战。Autoparty利用内部主动学习进行药物发现,以促进推断人类直觉的人在循环模型的训练。我们利用多个不确定性量化指标向用户查询用于模型训练的信息示例,限制了人类专家训练标签的数量。收集到的注释填充一个持久的、可导出的本地数据库,以供广泛的下游使用。在现实世界的案例研究中,在193种实验测试的化合物中,结合Autoparty的命中率比形状相似性提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autoparty: Machine Learning-Guided Visual Inspection of Molecular Docking Results

Autoparty: Machine Learning-Guided Visual Inspection of Molecular Docking Results

Human inspection of potential drug compounds is crucial in the virtual drug screening pipeline. However, there is a pressing need to accelerate this process, as the number of molecules humans can realistically examine is extremely limited relative to the scale of virtual screens. Furthermore, computational medicinal chemists can evaluate different poses inconsistently, and there is no standard way of recording annotations. We propose Autoparty, a containerized tool to address these challenges. Autoparty leverages on-premises active learning for drug discovery to facilitate human-in-the-loop training of models that extrapolate human intuition. We leverage multiple uncertainty quantification metrics to query the user with informative examples for model training, limiting the number of human expert training labels. The collected annotations populate a persistent and exportable local database for broad downstream uses. Incorporating Autoparty resulted in a 40% increase in hit rate over shape similarity alone among 193 experimentally tested compounds in a real-world case study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信