S Rehan Ahmad, Abdullah M AlShahrani, Anupriya Kumari
{"title":"致病性TRIM74突变破坏蛋白质稳态并通过结构不稳定触发蛋白质毒性神经变性。","authors":"S Rehan Ahmad, Abdullah M AlShahrani, Anupriya Kumari","doi":"10.1021/acschemneuro.5c00458","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin ligases play a critical role in maintaining proteostasis, synaptic function, and neuronal survival, and their dysfunction is increasingly implicated in neurodevelopmental disorders with neurodegenerative features. In this study, we investigate mutation in the ubiquitin ligase gene <i>TRIM74</i> [a novel homozygous missense variant c.562C > T (p.Pro121Leu)] in a 5-year-old male proband presenting with global developmental delay, hypotonia, seizures, and diffuse cerebral atrophy with mega cisterna magna. Structural and simulation studies revealed that Pro121, located at the start of a β sheet, likely functions as a sheet breaker. Substitution to leucine (P121L) resulted in aberrant beta strand extension, protein destabilization, and increased aggregation propensity. Free energy calculations indicated that all possible substitutions at this position were destabilizing. Multiple in silico prediction tools consistently classified the mutation as damaging or disease-causing. In proband-derived fibroblasts, TRIM74-P121L exhibited significant cytosolic aggregation and elevated Proteostat-positive granules, reflecting proteotoxic stress. Despite comparable transcript and total protein levels, mutant cells showed increased cell death and impaired cell cycle progression. Interaction network and gene ontology analyses revealed that TRIM74 and its partners are involved in ubiquitination, protein quality control, and transcriptional regulation─processes essential to neuronal homeostasis. TRIM74 expression was highest in the cerebellum and medulla, aligning with MRI abnormalities. Together, our findings establish the aberrant functioning of mutant TRIM74 as a pathogenic cause of neurodegenerative neurodevelopmental disorder and highlight the importance of ubiquitin ligases in maintaining neuronal integrity and preventing neurodegeneration.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathogenic TRIM74 Mutation Disrupts Protein Homeostasis and Triggers Proteotoxic Neurodegeneration via Structural Destabilization.\",\"authors\":\"S Rehan Ahmad, Abdullah M AlShahrani, Anupriya Kumari\",\"doi\":\"10.1021/acschemneuro.5c00458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitin ligases play a critical role in maintaining proteostasis, synaptic function, and neuronal survival, and their dysfunction is increasingly implicated in neurodevelopmental disorders with neurodegenerative features. In this study, we investigate mutation in the ubiquitin ligase gene <i>TRIM74</i> [a novel homozygous missense variant c.562C > T (p.Pro121Leu)] in a 5-year-old male proband presenting with global developmental delay, hypotonia, seizures, and diffuse cerebral atrophy with mega cisterna magna. Structural and simulation studies revealed that Pro121, located at the start of a β sheet, likely functions as a sheet breaker. Substitution to leucine (P121L) resulted in aberrant beta strand extension, protein destabilization, and increased aggregation propensity. Free energy calculations indicated that all possible substitutions at this position were destabilizing. Multiple in silico prediction tools consistently classified the mutation as damaging or disease-causing. In proband-derived fibroblasts, TRIM74-P121L exhibited significant cytosolic aggregation and elevated Proteostat-positive granules, reflecting proteotoxic stress. Despite comparable transcript and total protein levels, mutant cells showed increased cell death and impaired cell cycle progression. Interaction network and gene ontology analyses revealed that TRIM74 and its partners are involved in ubiquitination, protein quality control, and transcriptional regulation─processes essential to neuronal homeostasis. TRIM74 expression was highest in the cerebellum and medulla, aligning with MRI abnormalities. Together, our findings establish the aberrant functioning of mutant TRIM74 as a pathogenic cause of neurodegenerative neurodevelopmental disorder and highlight the importance of ubiquitin ligases in maintaining neuronal integrity and preventing neurodegeneration.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00458\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00458","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pathogenic TRIM74 Mutation Disrupts Protein Homeostasis and Triggers Proteotoxic Neurodegeneration via Structural Destabilization.
Ubiquitin ligases play a critical role in maintaining proteostasis, synaptic function, and neuronal survival, and their dysfunction is increasingly implicated in neurodevelopmental disorders with neurodegenerative features. In this study, we investigate mutation in the ubiquitin ligase gene TRIM74 [a novel homozygous missense variant c.562C > T (p.Pro121Leu)] in a 5-year-old male proband presenting with global developmental delay, hypotonia, seizures, and diffuse cerebral atrophy with mega cisterna magna. Structural and simulation studies revealed that Pro121, located at the start of a β sheet, likely functions as a sheet breaker. Substitution to leucine (P121L) resulted in aberrant beta strand extension, protein destabilization, and increased aggregation propensity. Free energy calculations indicated that all possible substitutions at this position were destabilizing. Multiple in silico prediction tools consistently classified the mutation as damaging or disease-causing. In proband-derived fibroblasts, TRIM74-P121L exhibited significant cytosolic aggregation and elevated Proteostat-positive granules, reflecting proteotoxic stress. Despite comparable transcript and total protein levels, mutant cells showed increased cell death and impaired cell cycle progression. Interaction network and gene ontology analyses revealed that TRIM74 and its partners are involved in ubiquitination, protein quality control, and transcriptional regulation─processes essential to neuronal homeostasis. TRIM74 expression was highest in the cerebellum and medulla, aligning with MRI abnormalities. Together, our findings establish the aberrant functioning of mutant TRIM74 as a pathogenic cause of neurodegenerative neurodevelopmental disorder and highlight the importance of ubiquitin ligases in maintaining neuronal integrity and preventing neurodegeneration.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research