发展复发性肝细胞癌的风险分层策略和生物标志物

IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jia-Hao Law, Huilin Shao, Ramanuj DasGupta, Daniel Q. Huang
{"title":"发展复发性肝细胞癌的风险分层策略和生物标志物","authors":"Jia-Hao Law,&nbsp;Huilin Shao,&nbsp;Ramanuj DasGupta,&nbsp;Daniel Q. Huang","doi":"10.1002/ctm2.70410","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with high rates of post-resection recurrence posing significant clinical challenges. Early recurrence is largely driven by aggressive tumor biology, while late recurrence reflects de novo carcinogenesis in a cirrhotic liver. Traditional clinical and pathological predictors are insufficient for accurately identifying high-risk patients. Emerging translational advances including genomic, transcriptomic, proteomic, and metabolomic biomarkers; liquid biopsy techniques; artificial intelligence (AI)-driven histological and radiomic analyses offer new avenues to refine recurrence risk stratification and guide perioperative therapy. Simultaneously, the shifting etiological landscape from viral hepatitis to metabolic dysfunction-associated steatohepatitis (MASH) and alcohol-related liver disease underscores the need for tailored surveillance and preventive strategies. Advanced technologies such as single-cell and spatial transcriptomics provide unprecedented insights into fibrosis progression and tumor evolution. Integrating these approaches may enable personalized surveillance protocols and therapeutic interventions, optimizing outcomes for HCC patients and reducing unnecessary resource utilization.</p>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 8","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70410","citationCount":"0","resultStr":"{\"title\":\"Developing risk stratification strategies and biomarkers for recurrent hepatocellular carcinoma\",\"authors\":\"Jia-Hao Law,&nbsp;Huilin Shao,&nbsp;Ramanuj DasGupta,&nbsp;Daniel Q. Huang\",\"doi\":\"10.1002/ctm2.70410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with high rates of post-resection recurrence posing significant clinical challenges. Early recurrence is largely driven by aggressive tumor biology, while late recurrence reflects de novo carcinogenesis in a cirrhotic liver. Traditional clinical and pathological predictors are insufficient for accurately identifying high-risk patients. Emerging translational advances including genomic, transcriptomic, proteomic, and metabolomic biomarkers; liquid biopsy techniques; artificial intelligence (AI)-driven histological and radiomic analyses offer new avenues to refine recurrence risk stratification and guide perioperative therapy. Simultaneously, the shifting etiological landscape from viral hepatitis to metabolic dysfunction-associated steatohepatitis (MASH) and alcohol-related liver disease underscores the need for tailored surveillance and preventive strategies. Advanced technologies such as single-cell and spatial transcriptomics provide unprecedented insights into fibrosis progression and tumor evolution. Integrating these approaches may enable personalized surveillance protocols and therapeutic interventions, optimizing outcomes for HCC patients and reducing unnecessary resource utilization.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10189,\"journal\":{\"name\":\"Clinical and Translational Medicine\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70410\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70410\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70410","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)仍然是癌症相关死亡的主要原因,其高切除术后复发率带来了重大的临床挑战。早期复发在很大程度上是由侵袭性肿瘤生物学驱动的,而晚期复发则反映了肝硬化的新发癌。传统的临床和病理预测指标不足以准确识别高危患者。包括基因组学、转录组学、蛋白质组学和代谢组学生物标志物在内的新兴翻译进展;液体活检技术;人工智能(AI)驱动的组织学和放射学分析为改进复发风险分层和指导围手术期治疗提供了新的途径。同时,从病毒性肝炎到代谢功能障碍相关脂肪性肝炎(MASH)和酒精相关肝病的病因学格局的转变强调了定制监测和预防策略的必要性。单细胞和空间转录组学等先进技术为纤维化进展和肿瘤演变提供了前所未有的见解。整合这些方法可以实现个性化的监测方案和治疗干预,优化HCC患者的预后,减少不必要的资源利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing risk stratification strategies and biomarkers for recurrent hepatocellular carcinoma

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with high rates of post-resection recurrence posing significant clinical challenges. Early recurrence is largely driven by aggressive tumor biology, while late recurrence reflects de novo carcinogenesis in a cirrhotic liver. Traditional clinical and pathological predictors are insufficient for accurately identifying high-risk patients. Emerging translational advances including genomic, transcriptomic, proteomic, and metabolomic biomarkers; liquid biopsy techniques; artificial intelligence (AI)-driven histological and radiomic analyses offer new avenues to refine recurrence risk stratification and guide perioperative therapy. Simultaneously, the shifting etiological landscape from viral hepatitis to metabolic dysfunction-associated steatohepatitis (MASH) and alcohol-related liver disease underscores the need for tailored surveillance and preventive strategies. Advanced technologies such as single-cell and spatial transcriptomics provide unprecedented insights into fibrosis progression and tumor evolution. Integrating these approaches may enable personalized surveillance protocols and therapeutic interventions, optimizing outcomes for HCC patients and reducing unnecessary resource utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
1.90%
发文量
450
审稿时长
4 weeks
期刊介绍: Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信