Quan Vu , Francis K.C. Hui , Samuel Muller , A.H. Welsh
{"title":"广义线性混合模型中的随机效应、错配及其预测后果","authors":"Quan Vu , Francis K.C. Hui , Samuel Muller , A.H. Welsh","doi":"10.1016/j.csda.2025.108254","DOIUrl":null,"url":null,"abstract":"<div><div>When fitting generalized linear mixed models, choosing the random effects distribution is an important decision. As random effects are unobserved, misspecification of their distribution is a real possibility. Thus, the consequences of random effects misspecification for point prediction and prediction inference of random effects in generalized linear mixed models need to be investigated. A combination of theory, simulation, and a real application is used to explore the effect of using the common normality assumption for the random effects distribution when the correct specification is a mixture of normal distributions, focusing on the impacts on point prediction, mean squared prediction errors, and prediction intervals. Results show that the level of shrinkage for the predicted random effects can differ greatly under the two random effect distributions, and so is susceptible to misspecification. Also, the unconditional mean squared prediction errors for the random effects are almost always larger under the misspecified normal random effects distribution, while results for the mean squared prediction errors conditional on the random effects are more complicated but remain generally larger under the misspecified distribution (especially when the true random effect is close to the mean of one of the component distributions in the true mixture distribution). Results for prediction intervals indicate that the overall coverage probability is, in contrast, not greatly impacted by misspecification. It is concluded that misspecifying the random effects distribution can affect prediction of random effects, and greater caution is recommended when adopting the normality assumption in generalized linear mixed models.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"213 ","pages":"Article 108254"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random effects misspecification and its consequences for prediction in generalized linear mixed models\",\"authors\":\"Quan Vu , Francis K.C. Hui , Samuel Muller , A.H. Welsh\",\"doi\":\"10.1016/j.csda.2025.108254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When fitting generalized linear mixed models, choosing the random effects distribution is an important decision. As random effects are unobserved, misspecification of their distribution is a real possibility. Thus, the consequences of random effects misspecification for point prediction and prediction inference of random effects in generalized linear mixed models need to be investigated. A combination of theory, simulation, and a real application is used to explore the effect of using the common normality assumption for the random effects distribution when the correct specification is a mixture of normal distributions, focusing on the impacts on point prediction, mean squared prediction errors, and prediction intervals. Results show that the level of shrinkage for the predicted random effects can differ greatly under the two random effect distributions, and so is susceptible to misspecification. Also, the unconditional mean squared prediction errors for the random effects are almost always larger under the misspecified normal random effects distribution, while results for the mean squared prediction errors conditional on the random effects are more complicated but remain generally larger under the misspecified distribution (especially when the true random effect is close to the mean of one of the component distributions in the true mixture distribution). Results for prediction intervals indicate that the overall coverage probability is, in contrast, not greatly impacted by misspecification. It is concluded that misspecifying the random effects distribution can affect prediction of random effects, and greater caution is recommended when adopting the normality assumption in generalized linear mixed models.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"213 \",\"pages\":\"Article 108254\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Random effects misspecification and its consequences for prediction in generalized linear mixed models
When fitting generalized linear mixed models, choosing the random effects distribution is an important decision. As random effects are unobserved, misspecification of their distribution is a real possibility. Thus, the consequences of random effects misspecification for point prediction and prediction inference of random effects in generalized linear mixed models need to be investigated. A combination of theory, simulation, and a real application is used to explore the effect of using the common normality assumption for the random effects distribution when the correct specification is a mixture of normal distributions, focusing on the impacts on point prediction, mean squared prediction errors, and prediction intervals. Results show that the level of shrinkage for the predicted random effects can differ greatly under the two random effect distributions, and so is susceptible to misspecification. Also, the unconditional mean squared prediction errors for the random effects are almost always larger under the misspecified normal random effects distribution, while results for the mean squared prediction errors conditional on the random effects are more complicated but remain generally larger under the misspecified distribution (especially when the true random effect is close to the mean of one of the component distributions in the true mixture distribution). Results for prediction intervals indicate that the overall coverage probability is, in contrast, not greatly impacted by misspecification. It is concluded that misspecifying the random effects distribution can affect prediction of random effects, and greater caution is recommended when adopting the normality assumption in generalized linear mixed models.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]