工作功能工程Mo2C MXene助催化剂中mo4d电子结构调制的高效光催化析氢

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL
Ruiyun Liu , Ping Wang , Xuefei Wang , Feng Chen , Huogen Yu
{"title":"工作功能工程Mo2C MXene助催化剂中mo4d电子结构调制的高效光催化析氢","authors":"Ruiyun Liu ,&nbsp;Ping Wang ,&nbsp;Xuefei Wang ,&nbsp;Feng Chen ,&nbsp;Huogen Yu","doi":"10.1016/j.actphy.2025.100137","DOIUrl":null,"url":null,"abstract":"<div><div>Mo<sub>2</sub>C MXene (Mo<sub>2</sub>CT<sub>x</sub>) exhibits exceptional hydrogen-evolution potential in photocatalysis due to the Pt-like electronic structure of surface Mo active sites. However, the Mo sites in Mo<sub>2</sub>CT<sub>x</sub> usually show excessively strong H-adsorption during HER, significantly limiting the intrinsic catalytic activity of Mo<sub>2</sub>CT<sub>x</sub>. To weaken the H-adsorption capacity of Mo active sites, a strategy of modulating <em>d</em>-orbital electron is implemented <em>via in-situ</em> constructing MoC-Mo<sub>2</sub>C MXene heterojunction by a work-function-induced effect. The MoC-Mo<sub>2</sub>CT<sub>x</sub> heterojunction was synthesized by <em>in</em><em>-</em><em>situ</em> conversion of Mo<sub>2</sub>C MXene into MoC <em>via</em> a Co-induced molten salt method, followed by coupling with TiO<sub>2</sub> through a simple ultrasonication-assisted method to prepare the MoC-Mo<sub>2</sub>CT<sub>x</sub>/TiO<sub>2</sub> photocatalyst. Photocatalytic tests showed that the optimal MoC-Mo<sub>2</sub>CT<sub>x</sub>/TiO<sub>2</sub> sample achieves an excellent hydrogen production rate of 1886 μmol h<sup>−1</sup> g<sup>−1</sup>, representing 117.9 and 3.9 fold enhancements over TiO<sub>2</sub> and Mo<sub>2</sub>CF<sub>x</sub>/TiO<sub>2</sub> (Mo<sub>2</sub>CF<sub>x</sub> prepared by a conventional etchant NH<sub>4</sub>F + HCl), respectively. Experimental and theoretical calculations substantiate that the work-function gradient between MoC and Mo<sub>2</sub>C MXene induces electron transfer from MoC to Mo<sub>2</sub>C MXene to weaken the H-adsorption of Mo active sites in Mo<sub>2</sub>CT<sub>x</sub> cocatalyst, thereby enhancing its HER activity. This research provides a new strategy of <em>in-situ</em> constructing Mo<sub>2</sub>C MXene-based heterojunction for adjusting the H-adsorption capacity of Mo active sites.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 11","pages":"Article 100137"},"PeriodicalIF":13.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution\",\"authors\":\"Ruiyun Liu ,&nbsp;Ping Wang ,&nbsp;Xuefei Wang ,&nbsp;Feng Chen ,&nbsp;Huogen Yu\",\"doi\":\"10.1016/j.actphy.2025.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mo<sub>2</sub>C MXene (Mo<sub>2</sub>CT<sub>x</sub>) exhibits exceptional hydrogen-evolution potential in photocatalysis due to the Pt-like electronic structure of surface Mo active sites. However, the Mo sites in Mo<sub>2</sub>CT<sub>x</sub> usually show excessively strong H-adsorption during HER, significantly limiting the intrinsic catalytic activity of Mo<sub>2</sub>CT<sub>x</sub>. To weaken the H-adsorption capacity of Mo active sites, a strategy of modulating <em>d</em>-orbital electron is implemented <em>via in-situ</em> constructing MoC-Mo<sub>2</sub>C MXene heterojunction by a work-function-induced effect. The MoC-Mo<sub>2</sub>CT<sub>x</sub> heterojunction was synthesized by <em>in</em><em>-</em><em>situ</em> conversion of Mo<sub>2</sub>C MXene into MoC <em>via</em> a Co-induced molten salt method, followed by coupling with TiO<sub>2</sub> through a simple ultrasonication-assisted method to prepare the MoC-Mo<sub>2</sub>CT<sub>x</sub>/TiO<sub>2</sub> photocatalyst. Photocatalytic tests showed that the optimal MoC-Mo<sub>2</sub>CT<sub>x</sub>/TiO<sub>2</sub> sample achieves an excellent hydrogen production rate of 1886 μmol h<sup>−1</sup> g<sup>−1</sup>, representing 117.9 and 3.9 fold enhancements over TiO<sub>2</sub> and Mo<sub>2</sub>CF<sub>x</sub>/TiO<sub>2</sub> (Mo<sub>2</sub>CF<sub>x</sub> prepared by a conventional etchant NH<sub>4</sub>F + HCl), respectively. Experimental and theoretical calculations substantiate that the work-function gradient between MoC and Mo<sub>2</sub>C MXene induces electron transfer from MoC to Mo<sub>2</sub>C MXene to weaken the H-adsorption of Mo active sites in Mo<sub>2</sub>CT<sub>x</sub> cocatalyst, thereby enhancing its HER activity. This research provides a new strategy of <em>in-situ</em> constructing Mo<sub>2</sub>C MXene-based heterojunction for adjusting the H-adsorption capacity of Mo active sites.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 11\",\"pages\":\"Article 100137\"},\"PeriodicalIF\":13.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825000931\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000931","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Mo2C MXene (Mo2CTx)由于其表面Mo活性位点具有pt样的电子结构,在光催化中表现出优异的析氢潜力。然而,Mo2CTx中的Mo位点在HER过程中通常表现出极强的h吸附,严重限制了Mo2CTx的内在催化活性。为了削弱Mo活性位点的h吸附能力,利用功函数诱导效应,通过原位构建MoC-Mo2C MXene异质结实现了d轨道电子调制策略。采用共诱导熔盐法将Mo2C MXene原位转化为MoC合成MoC- mo2ctx异质结,然后通过简单的超声辅助法与TiO2偶联制备MoC- mo2ctx /TiO2光催化剂。光催化实验表明,最佳MoC-Mo2CTx/TiO2样品的产氢率为1886 μmol h−1 g−1,分别比TiO2和Mo2CFx/TiO2 (Mo2CFx由传统蚀刻剂NH4F + HCl制备)提高了117.9倍和3.9倍。实验和理论计算证实,MoC和Mo2C MXene之间的功函数梯度诱导了MoC向Mo2C MXene的电子转移,从而减弱了Mo2CTx助催化剂中Mo活性位点的h吸附,从而提高了Mo2CTx助催化剂的HER活性。本研究提供了原位构建Mo2C mxen基异质结以调节Mo活性位点h吸附能力的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution

Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution
Mo2C MXene (Mo2CTx) exhibits exceptional hydrogen-evolution potential in photocatalysis due to the Pt-like electronic structure of surface Mo active sites. However, the Mo sites in Mo2CTx usually show excessively strong H-adsorption during HER, significantly limiting the intrinsic catalytic activity of Mo2CTx. To weaken the H-adsorption capacity of Mo active sites, a strategy of modulating d-orbital electron is implemented via in-situ constructing MoC-Mo2C MXene heterojunction by a work-function-induced effect. The MoC-Mo2CTx heterojunction was synthesized by in-situ conversion of Mo2C MXene into MoC via a Co-induced molten salt method, followed by coupling with TiO2 through a simple ultrasonication-assisted method to prepare the MoC-Mo2CTx/TiO2 photocatalyst. Photocatalytic tests showed that the optimal MoC-Mo2CTx/TiO2 sample achieves an excellent hydrogen production rate of 1886 μmol h−1 g−1, representing 117.9 and 3.9 fold enhancements over TiO2 and Mo2CFx/TiO2 (Mo2CFx prepared by a conventional etchant NH4F + HCl), respectively. Experimental and theoretical calculations substantiate that the work-function gradient between MoC and Mo2C MXene induces electron transfer from MoC to Mo2C MXene to weaken the H-adsorption of Mo active sites in Mo2CTx cocatalyst, thereby enhancing its HER activity. This research provides a new strategy of in-situ constructing Mo2C MXene-based heterojunction for adjusting the H-adsorption capacity of Mo active sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信