拥塞团平面点集的Voronoi图和三角剖分的确定性协议

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jesper Jansson , Christos Levcopoulos , Andrzej Lingas , Valentin Polishchuk , Quan Xue
{"title":"拥塞团平面点集的Voronoi图和三角剖分的确定性协议","authors":"Jesper Jansson ,&nbsp;Christos Levcopoulos ,&nbsp;Andrzej Lingas ,&nbsp;Valentin Polishchuk ,&nbsp;Quan Xue","doi":"10.1016/j.tcs.2025.115491","DOIUrl":null,"url":null,"abstract":"<div><div>We study the problems of computing the Voronoi diagram and a triangulation of a set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane in a substantially sublinear in <em>n</em> number of rounds in the congested clique model with <em>n</em> nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> rounds in this model. Finally, we present a deterministic <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-round protocol for a triangulation of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1055 ","pages":"Article 115491"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique\",\"authors\":\"Jesper Jansson ,&nbsp;Christos Levcopoulos ,&nbsp;Andrzej Lingas ,&nbsp;Valentin Polishchuk ,&nbsp;Quan Xue\",\"doi\":\"10.1016/j.tcs.2025.115491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the problems of computing the Voronoi diagram and a triangulation of a set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane in a substantially sublinear in <em>n</em> number of rounds in the congested clique model with <em>n</em> nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> rounds in this model. Finally, we present a deterministic <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-round protocol for a triangulation of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1055 \",\"pages\":\"Article 115491\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004293\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004293","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在n个节点的拥塞团模型中,以n次线性的n轮计算欧几里得平面上坐标为O(log n)位的n个点的Voronoi图和三角剖分问题。首先,我们观察到,如果点均匀随机分布在一个单位正方形中,那么它们在正方形内的Voronoi图可以在O(1)轮内以高概率(w.h.p)计算出来。接下来,我们证明,如果一个非常弱的平滑条件由单位正方形中坐标为O(log ln n)位的n2个点的输入集满足,那么在该模型中,单位正方形内点集的Voronoi图可以在O(log log n)轮中确定地计算出来。最后,我们在欧几里德平面上给出了一个确定的O(log (n))圆协议,该协议包含n2个点,坐标为O(log (n))位。它依赖于我们的新方法,将以直线分隔的两个平面点集的三角剖分扩展到O(1)轮集合并的完全三角剖分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique
We study the problems of computing the Voronoi diagram and a triangulation of a set of n2 points with O(logn)-bit coordinates in the Euclidean plane in a substantially sublinear in n number of rounds in the congested clique model with n nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in O(1) rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of n2 points with O(logn)-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in O(logn) rounds in this model. Finally, we present a deterministic O(logn)-round protocol for a triangulation of n2 points with O(logn)-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in O(1) rounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信