Jesper Jansson , Christos Levcopoulos , Andrzej Lingas , Valentin Polishchuk , Quan Xue
{"title":"拥塞团平面点集的Voronoi图和三角剖分的确定性协议","authors":"Jesper Jansson , Christos Levcopoulos , Andrzej Lingas , Valentin Polishchuk , Quan Xue","doi":"10.1016/j.tcs.2025.115491","DOIUrl":null,"url":null,"abstract":"<div><div>We study the problems of computing the Voronoi diagram and a triangulation of a set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane in a substantially sublinear in <em>n</em> number of rounds in the congested clique model with <em>n</em> nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> rounds in this model. Finally, we present a deterministic <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-round protocol for a triangulation of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1055 ","pages":"Article 115491"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique\",\"authors\":\"Jesper Jansson , Christos Levcopoulos , Andrzej Lingas , Valentin Polishchuk , Quan Xue\",\"doi\":\"10.1016/j.tcs.2025.115491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the problems of computing the Voronoi diagram and a triangulation of a set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane in a substantially sublinear in <em>n</em> number of rounds in the congested clique model with <em>n</em> nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> rounds in this model. Finally, we present a deterministic <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-round protocol for a triangulation of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> points with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> rounds.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1055 \",\"pages\":\"Article 115491\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004293\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004293","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique
We study the problems of computing the Voronoi diagram and a triangulation of a set of points with -bit coordinates in the Euclidean plane in a substantially sublinear in n number of rounds in the congested clique model with n nodes. First, we observe that if the points are uniformly at random distributed in a unit square then their Voronoi diagram within the square can be computed in rounds with high probability (w.h.p.). Next, we show that if a very weak smoothness condition is satisfied by an input set of points with -bit coordinates in the unit square then the Voronoi diagram of the point set within the unit square can be deterministically computed in rounds in this model. Finally, we present a deterministic -round protocol for a triangulation of points with -bit coordinates in the Euclidean plane. It relies on our novel method for extending triangulations of two planar point sets separated by a straight line to a complete triangulation of the union of the sets in rounds.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.