{"title":"车辆路线优化器用于垃圾收集和路线优化问题","authors":"Hussam Fakhouri , Amjad Hudaib , Faten Hamad , Sandi Fakhouri , Niveen Halalsheh , Mohannad S. Alkhalaileh","doi":"10.1016/j.iswa.2025.200521","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel dynamic optimization strategy called the Vehicle Route Optimizer (VRO), specifically designed to enhance the efficiency and sustainability of smart cities. Inspired by the dynamics and interactions observed in vehicle behavior and traffic systems, VRO effectively balances exploration and exploitation phases to discover optimal solutions. The algorithm has been rigorously tested using the IEEE CEC2022 benchmark suites, demonstrating its superior performance compared to 18 other optimizers. In smart cities, efficient waste management and routing are critical for reducing operational costs and minimizing environmental impact. Thus, VRO has been applied to solve the Waste Collection and Routing Optimization Problem (WCROP) in smart cities by integrating bin allocation and routing components into a single-objective optimization framework. In addressing WCROP in Smart Cities, VRO was evaluated using synthetic instances derived from PVRP-IF cases. The results show that VRO outperforms traditional hierarchical and heuristic methods in terms of total cost, computational efficiency, and solution feasibility.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"27 ","pages":"Article 200521"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle route optimizer for waste collection and routing optimization problem\",\"authors\":\"Hussam Fakhouri , Amjad Hudaib , Faten Hamad , Sandi Fakhouri , Niveen Halalsheh , Mohannad S. Alkhalaileh\",\"doi\":\"10.1016/j.iswa.2025.200521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel dynamic optimization strategy called the Vehicle Route Optimizer (VRO), specifically designed to enhance the efficiency and sustainability of smart cities. Inspired by the dynamics and interactions observed in vehicle behavior and traffic systems, VRO effectively balances exploration and exploitation phases to discover optimal solutions. The algorithm has been rigorously tested using the IEEE CEC2022 benchmark suites, demonstrating its superior performance compared to 18 other optimizers. In smart cities, efficient waste management and routing are critical for reducing operational costs and minimizing environmental impact. Thus, VRO has been applied to solve the Waste Collection and Routing Optimization Problem (WCROP) in smart cities by integrating bin allocation and routing components into a single-objective optimization framework. In addressing WCROP in Smart Cities, VRO was evaluated using synthetic instances derived from PVRP-IF cases. The results show that VRO outperforms traditional hierarchical and heuristic methods in terms of total cost, computational efficiency, and solution feasibility.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"27 \",\"pages\":\"Article 200521\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266730532500047X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266730532500047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle route optimizer for waste collection and routing optimization problem
This paper introduces a novel dynamic optimization strategy called the Vehicle Route Optimizer (VRO), specifically designed to enhance the efficiency and sustainability of smart cities. Inspired by the dynamics and interactions observed in vehicle behavior and traffic systems, VRO effectively balances exploration and exploitation phases to discover optimal solutions. The algorithm has been rigorously tested using the IEEE CEC2022 benchmark suites, demonstrating its superior performance compared to 18 other optimizers. In smart cities, efficient waste management and routing are critical for reducing operational costs and minimizing environmental impact. Thus, VRO has been applied to solve the Waste Collection and Routing Optimization Problem (WCROP) in smart cities by integrating bin allocation and routing components into a single-objective optimization framework. In addressing WCROP in Smart Cities, VRO was evaluated using synthetic instances derived from PVRP-IF cases. The results show that VRO outperforms traditional hierarchical and heuristic methods in terms of total cost, computational efficiency, and solution feasibility.