Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez
{"title":"通过PSA测试重建前列腺癌肿瘤生长的物理信息机器学习数字双胞胎。","authors":"Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez","doi":"10.1038/s41746-025-01890-x","DOIUrl":null,"url":null,"abstract":"Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"722 1","pages":"485"},"PeriodicalIF":15.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed machine learning digital twin for reconstructing prostate cancer tumor growth via PSA tests.\",\"authors\":\"Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez\",\"doi\":\"10.1038/s41746-025-01890-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"722 1\",\"pages\":\"485\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01890-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01890-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Physics-informed machine learning digital twin for reconstructing prostate cancer tumor growth via PSA tests.
Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.