通过PSA测试重建前列腺癌肿瘤生长的物理信息机器学习数字双胞胎。

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez
{"title":"通过PSA测试重建前列腺癌肿瘤生长的物理信息机器学习数字双胞胎。","authors":"Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez","doi":"10.1038/s41746-025-01890-x","DOIUrl":null,"url":null,"abstract":"Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"722 1","pages":"485"},"PeriodicalIF":15.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed machine learning digital twin for reconstructing prostate cancer tumor growth via PSA tests.\",\"authors\":\"Daniel Camacho-Gomez,Carlos Borau,Jose Manuel Garcia-Aznar,Maria Jose Gomez-Benito,Mark Girolami,Maria Angeles Perez\",\"doi\":\"10.1038/s41746-025-01890-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"722 1\",\"pages\":\"485\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01890-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01890-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

现有的前列腺癌监测方法依赖于血液检测中的前列腺特异性抗原(PSA)测量,往往无法检测到肿瘤的生长。我们开发了一个计算框架,从PSA中重建肿瘤生长,集成了基于物理的建模和数字双胞胎中的机器学习。基于物理的模型考虑PSA的分泌和从组织到血液的通量,取决于局部血管。该模型通过深度学习增强,通过患者的PSA血液测试和数字双胞胎生理变量的三维空间相互作用来调节肿瘤生长动态。我们通过重建诊断后2.5年内真实患者的肿瘤生长来展示我们的框架,肿瘤体积相对误差范围为0.8%至12.28%。此外,我们的研究结果揭示了尽管PSA水平没有显著升高,但肿瘤生长的情况。因此,我们的框架作为前列腺癌监测的一个有前途的工具,支持个性化监测方案的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-informed machine learning digital twin for reconstructing prostate cancer tumor growth via PSA tests.
Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient's PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信