中心压力波形的时频机器学习传递函数。

European heart journal open Pub Date : 2025-06-23 eCollection Date: 2025-07-01 DOI:10.1093/ehjopen/oeaf082
Soha Niroumandi, Heng Wei, Faisal Amlani, Hossein Gorji, Rashid Alavi, Julio A Chirinos, Niema M Pahlevan
{"title":"中心压力波形的时频机器学习传递函数。","authors":"Soha Niroumandi, Heng Wei, Faisal Amlani, Hossein Gorji, Rashid Alavi, Julio A Chirinos, Niema M Pahlevan","doi":"10.1093/ehjopen/oeaf082","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Clinical studies show that pulsatile haemodynamics and pressure waveform analysis are valuable for the diagnosis and prognosis of hypertension and heart failure (HF). While generalized transfer functions (GTFs) have shown clinical significance, some studies report limitations with GTF in capturing central pulsatile haemodynamics. This study introduces a hybrid time-frequency, machine learning-based transfer function that reconstructs central pressure waveforms from peripheral measurements, accurately capturing central pulsatile haemodynamics and arterial wave-based information.</p><p><strong>Methods and results: </strong>Our method uses Fourier harmonics for approximating the pressure waveform. The model is trained on these harmonics using a feed-forward neural network (FNN) with a custom time-domain cost function that captures the full temporal dynamics of physiological events during a cardiac cycle. The final hybridized-FNN transfer function model is trained, tested, and validated on data from the Framingham Heart Study (6698 participants). Our method produces carotid waveforms with median normalized mean squared error (%NMSE) values of 0.09 and 0.10 for brachial and radial inputs, compared to 0.42 and 0.26 for GTF, with similar accuracy improvements in other metrics. Correlation coefficients for the first and second forward wave times and amplitudes are 0.97, 0.93, 0.82, and 0.79 with brachial input, and 0.97, 0.92, 0.87, and 0.80 with radial input, vs. as low as 0.22 and 0.31 for GTF. Overall, our method significantly improved correlations across similarity, morphology, and wave-based parameters.</p><p><strong>Conclusion: </strong>Our hybridized FNN transfer function approach enables robust calculation of the central arterial pressure waveform from a single measured peripheral waveform, preserving key physiological sequences in a cardiac cycle.</p>","PeriodicalId":93995,"journal":{"name":"European heart journal open","volume":"5 4","pages":"oeaf082"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-frequency machine learning transfer function for central pressure waveforms.\",\"authors\":\"Soha Niroumandi, Heng Wei, Faisal Amlani, Hossein Gorji, Rashid Alavi, Julio A Chirinos, Niema M Pahlevan\",\"doi\":\"10.1093/ehjopen/oeaf082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Clinical studies show that pulsatile haemodynamics and pressure waveform analysis are valuable for the diagnosis and prognosis of hypertension and heart failure (HF). While generalized transfer functions (GTFs) have shown clinical significance, some studies report limitations with GTF in capturing central pulsatile haemodynamics. This study introduces a hybrid time-frequency, machine learning-based transfer function that reconstructs central pressure waveforms from peripheral measurements, accurately capturing central pulsatile haemodynamics and arterial wave-based information.</p><p><strong>Methods and results: </strong>Our method uses Fourier harmonics for approximating the pressure waveform. The model is trained on these harmonics using a feed-forward neural network (FNN) with a custom time-domain cost function that captures the full temporal dynamics of physiological events during a cardiac cycle. The final hybridized-FNN transfer function model is trained, tested, and validated on data from the Framingham Heart Study (6698 participants). Our method produces carotid waveforms with median normalized mean squared error (%NMSE) values of 0.09 and 0.10 for brachial and radial inputs, compared to 0.42 and 0.26 for GTF, with similar accuracy improvements in other metrics. Correlation coefficients for the first and second forward wave times and amplitudes are 0.97, 0.93, 0.82, and 0.79 with brachial input, and 0.97, 0.92, 0.87, and 0.80 with radial input, vs. as low as 0.22 and 0.31 for GTF. Overall, our method significantly improved correlations across similarity, morphology, and wave-based parameters.</p><p><strong>Conclusion: </strong>Our hybridized FNN transfer function approach enables robust calculation of the central arterial pressure waveform from a single measured peripheral waveform, preserving key physiological sequences in a cardiac cycle.</p>\",\"PeriodicalId\":93995,\"journal\":{\"name\":\"European heart journal open\",\"volume\":\"5 4\",\"pages\":\"oeaf082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjopen/oeaf082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjopen/oeaf082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:临床研究表明脉搏血流动力学和压力波形分析对高血压心力衰竭(HF)的诊断和预后有重要价值。虽然广义传递函数(GTF)已显示出临床意义,但一些研究报告了GTF在捕获中心搏动血流动力学方面的局限性。本研究引入了一种混合时频、基于机器学习的传递函数,该传递函数从外围测量中重建中心压力波形,准确捕获中心脉动血流动力学和基于动脉波的信息。方法与结果:本方法采用傅立叶谐波近似压力波形。该模型使用前馈神经网络(FNN)对这些谐波进行训练,该网络具有自定义的时域代价函数,可以捕获心脏周期中生理事件的完整时间动态。最终的混合- fnn传递函数模型在Framingham心脏研究(6698名参与者)的数据上进行训练、测试和验证。我们的方法产生的颈动脉波形中位数归一化均方误差(%NMSE)为0.09和0.10,相比之下,GTF为0.42和0.26,其他指标的精度也有类似的提高。臂向输入的第一、第二正向波次数和振幅的相关系数分别为0.97、0.93、0.82和0.79,径向输入的相关系数分别为0.97、0.92、0.87和0.80,而GTF的相关系数低至0.22和0.31。总的来说,我们的方法显著提高了相似性、形态和基于波的参数之间的相关性。结论:我们的杂交FNN传递函数方法能够从单个测量的外周波形中鲁棒地计算中心动脉压力波形,并保留心脏周期中的关键生理序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time-frequency machine learning transfer function for central pressure waveforms.

Time-frequency machine learning transfer function for central pressure waveforms.

Time-frequency machine learning transfer function for central pressure waveforms.

Time-frequency machine learning transfer function for central pressure waveforms.

Aims: Clinical studies show that pulsatile haemodynamics and pressure waveform analysis are valuable for the diagnosis and prognosis of hypertension and heart failure (HF). While generalized transfer functions (GTFs) have shown clinical significance, some studies report limitations with GTF in capturing central pulsatile haemodynamics. This study introduces a hybrid time-frequency, machine learning-based transfer function that reconstructs central pressure waveforms from peripheral measurements, accurately capturing central pulsatile haemodynamics and arterial wave-based information.

Methods and results: Our method uses Fourier harmonics for approximating the pressure waveform. The model is trained on these harmonics using a feed-forward neural network (FNN) with a custom time-domain cost function that captures the full temporal dynamics of physiological events during a cardiac cycle. The final hybridized-FNN transfer function model is trained, tested, and validated on data from the Framingham Heart Study (6698 participants). Our method produces carotid waveforms with median normalized mean squared error (%NMSE) values of 0.09 and 0.10 for brachial and radial inputs, compared to 0.42 and 0.26 for GTF, with similar accuracy improvements in other metrics. Correlation coefficients for the first and second forward wave times and amplitudes are 0.97, 0.93, 0.82, and 0.79 with brachial input, and 0.97, 0.92, 0.87, and 0.80 with radial input, vs. as low as 0.22 and 0.31 for GTF. Overall, our method significantly improved correlations across similarity, morphology, and wave-based parameters.

Conclusion: Our hybridized FNN transfer function approach enables robust calculation of the central arterial pressure waveform from a single measured peripheral waveform, preserving key physiological sequences in a cardiac cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信