{"title":"血府助瘀汤治疗糖尿病肾病肾纤维化的机制:UPLC-Q/TOF-MS、网络药理学及实验验证","authors":"Yifei Zhang, Shuaixing Zhang, Zeyu Zhang, Zijing Cao, Xuehui Bai, Shujiao Zhang, Mengqi Zhou, Jingyi Tang, Yiran Xie, Zhongjie Liu, Weijing Liu, Yuning Liu","doi":"10.4196/kjpp.24.330","DOIUrl":null,"url":null,"abstract":"<p><p>Xuefu Zhuyu decoction (XFZY) has therapeutic effects on diabetic kidney disease (DKD)-induced renal interstitial fibrosis (RIF), but the mechanisms are unclear. This study investigates XFZY's molecular mechanisms through network pharmacology and experimental validation. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and database screening was used to identify XFZY bioactive compounds. Common targets between these compounds and DKD-induced RIF were analyzed. A protein-protein interaction network was constructed, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Molecular docking validated interactions between XFZY compounds and targets. <i>In vivo</i>, a mouse model of DKD-induced RIF was established using streptozotocin and a high-fat diet. <i>In vitro</i>, human kidney-2 cells were treated with advanced glycation end products. Renal function and pathology were assessed, along with key protein expression levels. Using UPLC-Q-TOF-MS technology and database screening, seven bioactive components of XFZY were identified. Network pharmacology identified 61 common targets, including core targets like AKT1, MTOR, ULK1, and MMP9. Enrichment analysis indicated the AMPK signaling pathway is closely related to XFZY's therapeutic effects on DKD-induced RIF. Molecular docking demonstrated the seven bioactive components exhibited high binding affinities with key targets in the AMPK pathway (AMPK, mTOR, ULK1). <i>In vivo</i>, XFZY improved renal function, ameliorated renal pathology, reduced tubular injury, and alleviated RIF. Both <i>in vivo</i> and <i>in vitro</i>, XFZY increased phosphorylated AMPK and phosphorylated ULK1 expression, decreased phosphorylated MTOR, and reduced LC3 and p62 expression in the autophagy pathway. XFZY may alleviate DKD-induced RIF by modulating autophagy via the AMPK/MTOR/ULK1 pathway.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Xuefu Zhuyu decoction in treating diabetic kidney disease-induced renal fibrosis: UPLC-Q/TOF-MS, network pharmacology, and experimental validation.\",\"authors\":\"Yifei Zhang, Shuaixing Zhang, Zeyu Zhang, Zijing Cao, Xuehui Bai, Shujiao Zhang, Mengqi Zhou, Jingyi Tang, Yiran Xie, Zhongjie Liu, Weijing Liu, Yuning Liu\",\"doi\":\"10.4196/kjpp.24.330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Xuefu Zhuyu decoction (XFZY) has therapeutic effects on diabetic kidney disease (DKD)-induced renal interstitial fibrosis (RIF), but the mechanisms are unclear. This study investigates XFZY's molecular mechanisms through network pharmacology and experimental validation. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and database screening was used to identify XFZY bioactive compounds. Common targets between these compounds and DKD-induced RIF were analyzed. A protein-protein interaction network was constructed, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Molecular docking validated interactions between XFZY compounds and targets. <i>In vivo</i>, a mouse model of DKD-induced RIF was established using streptozotocin and a high-fat diet. <i>In vitro</i>, human kidney-2 cells were treated with advanced glycation end products. Renal function and pathology were assessed, along with key protein expression levels. Using UPLC-Q-TOF-MS technology and database screening, seven bioactive components of XFZY were identified. Network pharmacology identified 61 common targets, including core targets like AKT1, MTOR, ULK1, and MMP9. Enrichment analysis indicated the AMPK signaling pathway is closely related to XFZY's therapeutic effects on DKD-induced RIF. Molecular docking demonstrated the seven bioactive components exhibited high binding affinities with key targets in the AMPK pathway (AMPK, mTOR, ULK1). <i>In vivo</i>, XFZY improved renal function, ameliorated renal pathology, reduced tubular injury, and alleviated RIF. Both <i>in vivo</i> and <i>in vitro</i>, XFZY increased phosphorylated AMPK and phosphorylated ULK1 expression, decreased phosphorylated MTOR, and reduced LC3 and p62 expression in the autophagy pathway. XFZY may alleviate DKD-induced RIF by modulating autophagy via the AMPK/MTOR/ULK1 pathway.</p>\",\"PeriodicalId\":54746,\"journal\":{\"name\":\"Korean Journal of Physiology & Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Physiology & Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4196/kjpp.24.330\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Mechanisms of Xuefu Zhuyu decoction in treating diabetic kidney disease-induced renal fibrosis: UPLC-Q/TOF-MS, network pharmacology, and experimental validation.
Xuefu Zhuyu decoction (XFZY) has therapeutic effects on diabetic kidney disease (DKD)-induced renal interstitial fibrosis (RIF), but the mechanisms are unclear. This study investigates XFZY's molecular mechanisms through network pharmacology and experimental validation. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and database screening was used to identify XFZY bioactive compounds. Common targets between these compounds and DKD-induced RIF were analyzed. A protein-protein interaction network was constructed, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Molecular docking validated interactions between XFZY compounds and targets. In vivo, a mouse model of DKD-induced RIF was established using streptozotocin and a high-fat diet. In vitro, human kidney-2 cells were treated with advanced glycation end products. Renal function and pathology were assessed, along with key protein expression levels. Using UPLC-Q-TOF-MS technology and database screening, seven bioactive components of XFZY were identified. Network pharmacology identified 61 common targets, including core targets like AKT1, MTOR, ULK1, and MMP9. Enrichment analysis indicated the AMPK signaling pathway is closely related to XFZY's therapeutic effects on DKD-induced RIF. Molecular docking demonstrated the seven bioactive components exhibited high binding affinities with key targets in the AMPK pathway (AMPK, mTOR, ULK1). In vivo, XFZY improved renal function, ameliorated renal pathology, reduced tubular injury, and alleviated RIF. Both in vivo and in vitro, XFZY increased phosphorylated AMPK and phosphorylated ULK1 expression, decreased phosphorylated MTOR, and reduced LC3 and p62 expression in the autophagy pathway. XFZY may alleviate DKD-induced RIF by modulating autophagy via the AMPK/MTOR/ULK1 pathway.
期刊介绍:
The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.