David W Armitage, Alexandro G Alonso-Sánchez, Samantha R Coy, Zhuli Cheng, Arno Hagenbeek, Karla P López-Martínez, Yong Heng Phua, Alden R Sears
{"title":"瞬态微生物群中蓝藻的适应性泛基因组重塑。","authors":"David W Armitage, Alexandro G Alonso-Sánchez, Samantha R Coy, Zhuli Cheng, Arno Hagenbeek, Karla P López-Martínez, Yong Heng Phua, Alden R Sears","doi":"10.1093/ismejo/wraf154","DOIUrl":null,"url":null,"abstract":"<p><p>Plants fix nitrogen in concert with diverse microbial symbionts, often recruiting them from the surrounding environment each generation. Vertical transmission of a microbial symbiont from parent to offspring can produce extreme evolutionary consequences, including metabolic codependence, genome reduction, and synchronized life cycles. One of the few examples of vertical transmission of N-fixing symbionts occurs in Azolla ferns, which maintain an obligate mutualism with the cyanobacterium Trichormus azollae-but the genomic consequences of this interaction, and whether the symbiosis involves other vertically transmitted microbial partners, are currently unknown. We generated high-coverage metagenomes across the genus Azolla and reconstructed metagenome assembled genomes to investigate whether a core microbiome exists within Azolla leaf cavities, and how the genomes of T. azollae diverged from their free-living relatives. Our results suggest that T. azollae is the only consistent symbiont across all Azolla accessions, and that other bacterial groups are transient or facultative associates. Pangenomic analyses of T. azollae indicate extreme pseudogenization and gene loss compared to free-living relatives-especially in defensive, stress-tolerance, and secondary metabolite pathways-yet, the key functions of nitrogen fixation and photosynthesis remain intact. Additionally, differential codon bias and intensified positive selection on photosynthesis, intracellular transport, and carbohydrate metabolism genes suggest ongoing evolution in response to the unique conditions within Azolla leaf cavities. These findings highlight how genome erosion and shifting selection pressures jointly drive the evolution of this unique mutualism, while broadening the taxonomic scope of genomic studies on vertically transmitted symbioses.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive pangenomic remodeling in the Azolla cyanobiont amid a transient microbiome.\",\"authors\":\"David W Armitage, Alexandro G Alonso-Sánchez, Samantha R Coy, Zhuli Cheng, Arno Hagenbeek, Karla P López-Martínez, Yong Heng Phua, Alden R Sears\",\"doi\":\"10.1093/ismejo/wraf154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants fix nitrogen in concert with diverse microbial symbionts, often recruiting them from the surrounding environment each generation. Vertical transmission of a microbial symbiont from parent to offspring can produce extreme evolutionary consequences, including metabolic codependence, genome reduction, and synchronized life cycles. One of the few examples of vertical transmission of N-fixing symbionts occurs in Azolla ferns, which maintain an obligate mutualism with the cyanobacterium Trichormus azollae-but the genomic consequences of this interaction, and whether the symbiosis involves other vertically transmitted microbial partners, are currently unknown. We generated high-coverage metagenomes across the genus Azolla and reconstructed metagenome assembled genomes to investigate whether a core microbiome exists within Azolla leaf cavities, and how the genomes of T. azollae diverged from their free-living relatives. Our results suggest that T. azollae is the only consistent symbiont across all Azolla accessions, and that other bacterial groups are transient or facultative associates. Pangenomic analyses of T. azollae indicate extreme pseudogenization and gene loss compared to free-living relatives-especially in defensive, stress-tolerance, and secondary metabolite pathways-yet, the key functions of nitrogen fixation and photosynthesis remain intact. Additionally, differential codon bias and intensified positive selection on photosynthesis, intracellular transport, and carbohydrate metabolism genes suggest ongoing evolution in response to the unique conditions within Azolla leaf cavities. These findings highlight how genome erosion and shifting selection pressures jointly drive the evolution of this unique mutualism, while broadening the taxonomic scope of genomic studies on vertically transmitted symbioses.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf154\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf154","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Adaptive pangenomic remodeling in the Azolla cyanobiont amid a transient microbiome.
Plants fix nitrogen in concert with diverse microbial symbionts, often recruiting them from the surrounding environment each generation. Vertical transmission of a microbial symbiont from parent to offspring can produce extreme evolutionary consequences, including metabolic codependence, genome reduction, and synchronized life cycles. One of the few examples of vertical transmission of N-fixing symbionts occurs in Azolla ferns, which maintain an obligate mutualism with the cyanobacterium Trichormus azollae-but the genomic consequences of this interaction, and whether the symbiosis involves other vertically transmitted microbial partners, are currently unknown. We generated high-coverage metagenomes across the genus Azolla and reconstructed metagenome assembled genomes to investigate whether a core microbiome exists within Azolla leaf cavities, and how the genomes of T. azollae diverged from their free-living relatives. Our results suggest that T. azollae is the only consistent symbiont across all Azolla accessions, and that other bacterial groups are transient or facultative associates. Pangenomic analyses of T. azollae indicate extreme pseudogenization and gene loss compared to free-living relatives-especially in defensive, stress-tolerance, and secondary metabolite pathways-yet, the key functions of nitrogen fixation and photosynthesis remain intact. Additionally, differential codon bias and intensified positive selection on photosynthesis, intracellular transport, and carbohydrate metabolism genes suggest ongoing evolution in response to the unique conditions within Azolla leaf cavities. These findings highlight how genome erosion and shifting selection pressures jointly drive the evolution of this unique mutualism, while broadening the taxonomic scope of genomic studies on vertically transmitted symbioses.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.