反复流动对加泰罗尼亚空气污染暴露和死亡率负担的影响。

IF 3 2区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Alejandro Navarro-Martínez, Meriem Hajji, Jan Mateu Armengol, Albert Soret, Miguel Ponce-de-León, Alfonso Valencia
{"title":"反复流动对加泰罗尼亚空气污染暴露和死亡率负担的影响。","authors":"Alejandro Navarro-Martínez, Meriem Hajji, Jan Mateu Armengol, Albert Soret, Miguel Ponce-de-León, Alfonso Valencia","doi":"10.1186/s12942-025-00410-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Air pollution exposure is a leading health risk mainly due to its detrimental respiratory and cardiovascular effects. Ambient air quality varies greatly across time and space, most anthropogenic pollutants being higher in cities than rural areas. Residents of rural areas who commute to cities for work are also exposed to the air pollution there. Therefore, exposure assessments that neglect population mobility produce biased estimates.</p><p><strong>Methods: </strong>In this study, we quantify the effect of recurrent mobility on long-term air pollution exposure and its attributable mortality for the pollutants NO <math><mmultiscripts><mrow></mrow> <mn>2</mn> <mrow></mrow></mmultiscripts> </math> , O <math><mmultiscripts><mrow></mrow> <mn>3</mn> <mrow></mrow></mmultiscripts> </math> , PM <math><mmultiscripts><mrow></mrow> <mrow><mn>2.5</mn></mrow> <mrow></mrow></mmultiscripts> </math> and PM <math><mmultiscripts><mrow></mrow> <mn>10</mn> <mrow></mrow></mmultiscripts> </math> , for 584 districts of Catalonia (Spain) in 2022. We use anonymized phone-based mobility data to infer the dynamic distribution of the residents of each district among the different areas, considering only recurrent mobility. We also utilise finely-resolved air quality data for the four pollutants from the bias-corrected CALIOPE model, projected over the districts. We integrate dynamic population with the air quality to calculate dynamic exposure estimates, and compute the effect of mobility on long-term exposure with respect to the static estimates. We also calculate the mortality attributable to each pollutant and the effect of mobility.</p><p><strong>Results: </strong>Considering the four pollutants, between 75.9% and 86.3% of the districts present significant effects of mobility on exposure. Rural areas surrounding cities display increased exposures to NO <math><mmultiscripts><mrow></mrow> <mn>2</mn> <mrow></mrow></mmultiscripts> </math> , PM <math><mmultiscripts><mrow></mrow> <mrow><mn>2.5</mn></mrow> <mrow></mrow></mmultiscripts> </math> and PM <math><mmultiscripts><mrow></mrow> <mn>10</mn> <mrow></mrow></mmultiscripts> </math> , and decreased exposures to O <math><mmultiscripts><mrow></mrow> <mn>3</mn> <mrow></mrow></mmultiscripts> </math> . The magnitude of these effects stays under 1 <math><mi>μ</mi></math> g/m <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>3</mn></mmultiscripts> </math> when considering the complete populations, but they increase up to 8.3 <math><mi>μ</mi></math> g/m <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>3</mn></mmultiscripts> </math> of change when we focus on the mobile populations. However, the effects on attributable mortality are negligible.</p><p><strong>Conclusions: </strong>Our work evidences the impact of cities on the air pollution exposure of people living far away from them, made possible by recurrent mobility. Our results show that correcting exposure profiles by mobility might not have a large impact at the population level when inter-area mobility is relatively low, but can be very significant for individuals and population segments with specific mobility habits, and as such should be taken into account for the design of public health policies.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"24 1","pages":"19"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306083/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of recurrent mobility on air pollution exposure and mortality burden in Catalonia.\",\"authors\":\"Alejandro Navarro-Martínez, Meriem Hajji, Jan Mateu Armengol, Albert Soret, Miguel Ponce-de-León, Alfonso Valencia\",\"doi\":\"10.1186/s12942-025-00410-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Air pollution exposure is a leading health risk mainly due to its detrimental respiratory and cardiovascular effects. Ambient air quality varies greatly across time and space, most anthropogenic pollutants being higher in cities than rural areas. Residents of rural areas who commute to cities for work are also exposed to the air pollution there. Therefore, exposure assessments that neglect population mobility produce biased estimates.</p><p><strong>Methods: </strong>In this study, we quantify the effect of recurrent mobility on long-term air pollution exposure and its attributable mortality for the pollutants NO <math><mmultiscripts><mrow></mrow> <mn>2</mn> <mrow></mrow></mmultiscripts> </math> , O <math><mmultiscripts><mrow></mrow> <mn>3</mn> <mrow></mrow></mmultiscripts> </math> , PM <math><mmultiscripts><mrow></mrow> <mrow><mn>2.5</mn></mrow> <mrow></mrow></mmultiscripts> </math> and PM <math><mmultiscripts><mrow></mrow> <mn>10</mn> <mrow></mrow></mmultiscripts> </math> , for 584 districts of Catalonia (Spain) in 2022. We use anonymized phone-based mobility data to infer the dynamic distribution of the residents of each district among the different areas, considering only recurrent mobility. We also utilise finely-resolved air quality data for the four pollutants from the bias-corrected CALIOPE model, projected over the districts. We integrate dynamic population with the air quality to calculate dynamic exposure estimates, and compute the effect of mobility on long-term exposure with respect to the static estimates. We also calculate the mortality attributable to each pollutant and the effect of mobility.</p><p><strong>Results: </strong>Considering the four pollutants, between 75.9% and 86.3% of the districts present significant effects of mobility on exposure. Rural areas surrounding cities display increased exposures to NO <math><mmultiscripts><mrow></mrow> <mn>2</mn> <mrow></mrow></mmultiscripts> </math> , PM <math><mmultiscripts><mrow></mrow> <mrow><mn>2.5</mn></mrow> <mrow></mrow></mmultiscripts> </math> and PM <math><mmultiscripts><mrow></mrow> <mn>10</mn> <mrow></mrow></mmultiscripts> </math> , and decreased exposures to O <math><mmultiscripts><mrow></mrow> <mn>3</mn> <mrow></mrow></mmultiscripts> </math> . The magnitude of these effects stays under 1 <math><mi>μ</mi></math> g/m <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>3</mn></mmultiscripts> </math> when considering the complete populations, but they increase up to 8.3 <math><mi>μ</mi></math> g/m <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>3</mn></mmultiscripts> </math> of change when we focus on the mobile populations. However, the effects on attributable mortality are negligible.</p><p><strong>Conclusions: </strong>Our work evidences the impact of cities on the air pollution exposure of people living far away from them, made possible by recurrent mobility. Our results show that correcting exposure profiles by mobility might not have a large impact at the population level when inter-area mobility is relatively low, but can be very significant for individuals and population segments with specific mobility habits, and as such should be taken into account for the design of public health policies.</p>\",\"PeriodicalId\":48739,\"journal\":{\"name\":\"International Journal of Health Geographics\",\"volume\":\"24 1\",\"pages\":\"19\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Health Geographics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12942-025-00410-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Health Geographics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12942-025-00410-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

背景:空气污染暴露是一种主要的健康风险,主要是由于其有害的呼吸和心血管影响。环境空气质量随时间和空间变化很大,大多数人为污染物在城市高于农村地区。通勤到城市工作的农村居民也暴露在那里的空气污染中。因此,忽视人口流动的暴露评估会产生有偏差的估计。方法:在本研究中,我们量化了2022年加泰罗尼亚(西班牙)584个地区经常性流动对长期空气污染暴露的影响及其对污染物no2、o3、PM 2.5和PM 10的归因死亡率。我们使用匿名的基于电话的流动性数据来推断每个地区的居民在不同地区之间的动态分布,只考虑经常性的流动性。我们还利用来自校正偏差的CALIOPE模型的四种污染物的精细空气质量数据,预测了各个地区。我们将动态人口与空气质量结合起来计算动态暴露估计,并根据静态估计计算流动性对长期暴露的影响。我们还计算了每种污染物的死亡率和流动性的影响。结果:考虑到四种污染物,75.9% ~ 86.3%的地区存在显著的流动性影响。城市周边农村地区的二氧化氮、pm2.5和pm10暴露量增加,而臭氧暴露量减少。当考虑完整种群时,这些影响的幅度保持在1 μ g/m 3以下,但当我们关注流动种群时,它们的变化幅度增加到8.3 μ g/m 3。然而,对可归因死亡率的影响可以忽略不计。结论:我们的工作证明了城市对居住在远离城市的人们的空气污染暴露的影响,这可能是由于经常流动。我们的研究结果表明,当区域间流动性相对较低时,通过流动性修正暴露剖面可能不会在人口水平上产生很大影响,但对于具有特定流动性习惯的个人和人群群体来说可能非常重要,因此应该在公共卫生政策的设计中加以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of recurrent mobility on air pollution exposure and mortality burden in Catalonia.

Background: Air pollution exposure is a leading health risk mainly due to its detrimental respiratory and cardiovascular effects. Ambient air quality varies greatly across time and space, most anthropogenic pollutants being higher in cities than rural areas. Residents of rural areas who commute to cities for work are also exposed to the air pollution there. Therefore, exposure assessments that neglect population mobility produce biased estimates.

Methods: In this study, we quantify the effect of recurrent mobility on long-term air pollution exposure and its attributable mortality for the pollutants NO 2 , O 3 , PM 2.5 and PM 10 , for 584 districts of Catalonia (Spain) in 2022. We use anonymized phone-based mobility data to infer the dynamic distribution of the residents of each district among the different areas, considering only recurrent mobility. We also utilise finely-resolved air quality data for the four pollutants from the bias-corrected CALIOPE model, projected over the districts. We integrate dynamic population with the air quality to calculate dynamic exposure estimates, and compute the effect of mobility on long-term exposure with respect to the static estimates. We also calculate the mortality attributable to each pollutant and the effect of mobility.

Results: Considering the four pollutants, between 75.9% and 86.3% of the districts present significant effects of mobility on exposure. Rural areas surrounding cities display increased exposures to NO 2 , PM 2.5 and PM 10 , and decreased exposures to O 3 . The magnitude of these effects stays under 1 μ g/m 3 when considering the complete populations, but they increase up to 8.3 μ g/m 3 of change when we focus on the mobile populations. However, the effects on attributable mortality are negligible.

Conclusions: Our work evidences the impact of cities on the air pollution exposure of people living far away from them, made possible by recurrent mobility. Our results show that correcting exposure profiles by mobility might not have a large impact at the population level when inter-area mobility is relatively low, but can be very significant for individuals and population segments with specific mobility habits, and as such should be taken into account for the design of public health policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Health Geographics
International Journal of Health Geographics PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH -
CiteScore
10.20
自引率
2.00%
发文量
17
审稿时长
12 weeks
期刊介绍: A leader among the field, International Journal of Health Geographics is an interdisciplinary, open access journal publishing internationally significant studies of geospatial information systems and science applications in health and healthcare. With an exceptional author satisfaction rate and a quick time to first decision, the journal caters to readers across an array of healthcare disciplines globally. International Journal of Health Geographics welcomes novel studies in the health and healthcare context spanning from spatial data infrastructure and Web geospatial interoperability research, to research into real-time Geographic Information Systems (GIS)-enabled surveillance services, remote sensing applications, spatial epidemiology, spatio-temporal statistics, internet GIS and cyberspace mapping, participatory GIS and citizen sensing, geospatial big data, healthy smart cities and regions, and geospatial Internet of Things and blockchain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信