{"title":"乙醇作为水不溶性污染物载体在BEAS-2B细胞毒性试验中的影响。","authors":"Emma Ann Landskroner, Candace Su-Jung Tsai","doi":"10.1080/15376516.2025.2540457","DOIUrl":null,"url":null,"abstract":"<p><p><i>In vitro</i> human cell models are the gold standard for toxicological screening of environmental pollutants, allowing precise profiling of cellular responses. Pollutants with limited water solubility require carrier vehicles for uniform exposure. Ethanol, a commonly used vehicle, is typically maintained at 0.05-1.0% (v/v) to minimize toxicity. However, definitive no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) for ethanol in non-tumorigenic human bronchial epithelial (BEAS-2B) cells, prevalent in inhalation studies, have not been established. Researchers thus apply a range of ethanol concentrations derived from diverse cell lines, increasing the risk of vehicle interference. This study evaluated ethanol as a cosolvent vehicle for four emerging high-flashpoint hydrocarbon (HFHC) dry cleaning solvents in BEAS-2B cells. HFHC solvents were solubilized 1:1 in 100% ethanol, then diluted in bronchial epithelial cell growth basal medium to final concentrations of 0.05%, 0.25%, 0.5%, and 2.5% (v/v). Vehicle, positive, and negative controls isolated ethanol-specific cytotoxic effects. Cytotoxicity was assessed via cellular viability (MTS assay) at 24 and 48 h, and lactate dehydrogenase (LDH) and interleukin-8 (IL-8) release after 24 h. Ethanol drove viability loss at ≥0.5% (24 h) and ≥0.25% (48 h), induced inflammation at concentrations ≥0.05%, and minimally impacted membrane integrity. Most HFHC solvents showed minimal effects beyond ethanol alone, except one HFHC, Intense, causing significant membrane disruption and cytotoxicity even at low doses (0.05-0.25%). Practical ethanol noninterference thresholds recommended are ≤0.5% for 24-hour assays, ≤0.25% for 48-hour viability, and ≤0.05% for inflammatory endpoints, establishing critical guidelines for ethanol use in BEAS-2B assays.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-13"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410134/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of ethanol as a vehicle for water-insoluble pollutants in BEAS-2B cell toxicity assays.\",\"authors\":\"Emma Ann Landskroner, Candace Su-Jung Tsai\",\"doi\":\"10.1080/15376516.2025.2540457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>In vitro</i> human cell models are the gold standard for toxicological screening of environmental pollutants, allowing precise profiling of cellular responses. Pollutants with limited water solubility require carrier vehicles for uniform exposure. Ethanol, a commonly used vehicle, is typically maintained at 0.05-1.0% (v/v) to minimize toxicity. However, definitive no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) for ethanol in non-tumorigenic human bronchial epithelial (BEAS-2B) cells, prevalent in inhalation studies, have not been established. Researchers thus apply a range of ethanol concentrations derived from diverse cell lines, increasing the risk of vehicle interference. This study evaluated ethanol as a cosolvent vehicle for four emerging high-flashpoint hydrocarbon (HFHC) dry cleaning solvents in BEAS-2B cells. HFHC solvents were solubilized 1:1 in 100% ethanol, then diluted in bronchial epithelial cell growth basal medium to final concentrations of 0.05%, 0.25%, 0.5%, and 2.5% (v/v). Vehicle, positive, and negative controls isolated ethanol-specific cytotoxic effects. Cytotoxicity was assessed via cellular viability (MTS assay) at 24 and 48 h, and lactate dehydrogenase (LDH) and interleukin-8 (IL-8) release after 24 h. Ethanol drove viability loss at ≥0.5% (24 h) and ≥0.25% (48 h), induced inflammation at concentrations ≥0.05%, and minimally impacted membrane integrity. Most HFHC solvents showed minimal effects beyond ethanol alone, except one HFHC, Intense, causing significant membrane disruption and cytotoxicity even at low doses (0.05-0.25%). Practical ethanol noninterference thresholds recommended are ≤0.5% for 24-hour assays, ≤0.25% for 48-hour viability, and ≤0.05% for inflammatory endpoints, establishing critical guidelines for ethanol use in BEAS-2B assays.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2025.2540457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2540457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Impact of ethanol as a vehicle for water-insoluble pollutants in BEAS-2B cell toxicity assays.
In vitro human cell models are the gold standard for toxicological screening of environmental pollutants, allowing precise profiling of cellular responses. Pollutants with limited water solubility require carrier vehicles for uniform exposure. Ethanol, a commonly used vehicle, is typically maintained at 0.05-1.0% (v/v) to minimize toxicity. However, definitive no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) for ethanol in non-tumorigenic human bronchial epithelial (BEAS-2B) cells, prevalent in inhalation studies, have not been established. Researchers thus apply a range of ethanol concentrations derived from diverse cell lines, increasing the risk of vehicle interference. This study evaluated ethanol as a cosolvent vehicle for four emerging high-flashpoint hydrocarbon (HFHC) dry cleaning solvents in BEAS-2B cells. HFHC solvents were solubilized 1:1 in 100% ethanol, then diluted in bronchial epithelial cell growth basal medium to final concentrations of 0.05%, 0.25%, 0.5%, and 2.5% (v/v). Vehicle, positive, and negative controls isolated ethanol-specific cytotoxic effects. Cytotoxicity was assessed via cellular viability (MTS assay) at 24 and 48 h, and lactate dehydrogenase (LDH) and interleukin-8 (IL-8) release after 24 h. Ethanol drove viability loss at ≥0.5% (24 h) and ≥0.25% (48 h), induced inflammation at concentrations ≥0.05%, and minimally impacted membrane integrity. Most HFHC solvents showed minimal effects beyond ethanol alone, except one HFHC, Intense, causing significant membrane disruption and cytotoxicity even at low doses (0.05-0.25%). Practical ethanol noninterference thresholds recommended are ≤0.5% for 24-hour assays, ≤0.25% for 48-hour viability, and ≤0.05% for inflammatory endpoints, establishing critical guidelines for ethanol use in BEAS-2B assays.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.