Ilya B Slizovskiy, Tara N Gaire, Peter M Ferm, Carissa A Odland, Scott A Dee, Joel Nerem, Jonathan E Bravo, Alejandro D Kimball, Christina Boucher, Noelle R Noyes
{"title":"通过养猪场生物安全减少皮肤微生物群暴露的影响。","authors":"Ilya B Slizovskiy, Tara N Gaire, Peter M Ferm, Carissa A Odland, Scott A Dee, Joel Nerem, Jonathan E Bravo, Alejandro D Kimball, Christina Boucher, Noelle R Noyes","doi":"10.1093/gigascience/giaf062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Livestock work is unique due to worker exposure to animal-associated microbiomes within the workplace. Swine workers are a unique cohort within the US livestock labor force, as they have direct daily contact with pigs and undertake mandatory biosecurity interventions. However, investigating this occupational cohort is challenging, particularly within tightly regulated commercial swine operations. Thus, little is known about the impacts of animal exposure and biosecurity protocols on the swine worker microbiome. We obtained unique samples from US swine workers, using a longitudinal study design to investigate temporal microbiome dynamics.</p><p><strong>Results: </strong>We observed a significant increase in bacterial DNA load on worker skin during the workday, with concurrent changes in the composition and abundance of microbial taxa, resistance genes, and mobile genetic elements. However, mandatory showering at the end of the workday partially returned the skin's microbiome and resistome to their original state.</p><p><strong>Conclusions: </strong>These novel results from a human cohort demonstrate that existing biosecurity practices can ameliorate work-associated microbiome impacts.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing skin microbiome exposure impacts through swine farm biosecurity.\",\"authors\":\"Ilya B Slizovskiy, Tara N Gaire, Peter M Ferm, Carissa A Odland, Scott A Dee, Joel Nerem, Jonathan E Bravo, Alejandro D Kimball, Christina Boucher, Noelle R Noyes\",\"doi\":\"10.1093/gigascience/giaf062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Livestock work is unique due to worker exposure to animal-associated microbiomes within the workplace. Swine workers are a unique cohort within the US livestock labor force, as they have direct daily contact with pigs and undertake mandatory biosecurity interventions. However, investigating this occupational cohort is challenging, particularly within tightly regulated commercial swine operations. Thus, little is known about the impacts of animal exposure and biosecurity protocols on the swine worker microbiome. We obtained unique samples from US swine workers, using a longitudinal study design to investigate temporal microbiome dynamics.</p><p><strong>Results: </strong>We observed a significant increase in bacterial DNA load on worker skin during the workday, with concurrent changes in the composition and abundance of microbial taxa, resistance genes, and mobile genetic elements. However, mandatory showering at the end of the workday partially returned the skin's microbiome and resistome to their original state.</p><p><strong>Conclusions: </strong>These novel results from a human cohort demonstrate that existing biosecurity practices can ameliorate work-associated microbiome impacts.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf062\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reducing skin microbiome exposure impacts through swine farm biosecurity.
Background: Livestock work is unique due to worker exposure to animal-associated microbiomes within the workplace. Swine workers are a unique cohort within the US livestock labor force, as they have direct daily contact with pigs and undertake mandatory biosecurity interventions. However, investigating this occupational cohort is challenging, particularly within tightly regulated commercial swine operations. Thus, little is known about the impacts of animal exposure and biosecurity protocols on the swine worker microbiome. We obtained unique samples from US swine workers, using a longitudinal study design to investigate temporal microbiome dynamics.
Results: We observed a significant increase in bacterial DNA load on worker skin during the workday, with concurrent changes in the composition and abundance of microbial taxa, resistance genes, and mobile genetic elements. However, mandatory showering at the end of the workday partially returned the skin's microbiome and resistome to their original state.
Conclusions: These novel results from a human cohort demonstrate that existing biosecurity practices can ameliorate work-associated microbiome impacts.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.