向列液晶中二维和三维超材料的自组织。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Anu Koviloor Manian, Jayasri Dontabhaktuni
{"title":"向列液晶中二维和三维超材料的自组织。","authors":"Anu Koviloor Manian,&nbsp;Jayasri Dontabhaktuni","doi":"10.1002/cphc.202500272","DOIUrl":null,"url":null,"abstract":"<p>Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 17","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals\",\"authors\":\"Anu Koviloor Manian,&nbsp;Jayasri Dontabhaktuni\",\"doi\":\"10.1002/cphc.202500272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\"26 17\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500272\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500272","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

液晶(lc)是一类令人着迷的材料,具有各向异性的光学和介电特性,使其成为形成自组织二维和三维光子结构的理想候选者。它们形成了一种多功能介质,支持二维和三维的周期、非周期和准周期结构的结构自组织。LCs自组织背后的主要驱动力包括弹性扭曲、表面锚定和外部场。外部刺激如电场或磁场、温度梯度或光照射可以重新定向LC分子,提供对自组装结构的动态控制。因此,这些结构与入射光相互作用,使可调谐光子器件的应用成为可能。这些光子结构,特别是在亚衍射极限下,被称为超材料,产生了前所未有的光控制。超材料及其在lc中的新应用和自组装是备受关注的课题。然而,关于lc集成超材料这一新兴领域的文章很少,这是本文感兴趣的主题。在本文中,我们对基于向列lc的超表面进行了广泛的回顾,这些超表面产生了先进的光操作功能,如光束转向、光探测和测距、全息、传感以及多功能和可重构光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals

Self-Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals

Self-Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals

Self-Organization of 2D and 3D Metamaterials in Nematic Liquid Crystals

Liquid crystals (LCs) are a fascinating class of materials with anisotropic optical and dielectric properties making them ideal candidates for forming self-organized 2D and 3D photonic structures. They form a versatile medium to support self-organization of structures into periodic, aperiodic, and quasiperiodic structures in 2D and 3D. Key driving forces behind self-organization in LCs include elastic distortions, surface anchoring, and external fields. External stimuli such as electric or magnetic fields, temperature gradients, or light irradiation can reorient LC molecules, providing dynamic control over the self-assembled structures. Hence, these structures interact with incoming light, enabling applications in tunable photonic devices. These photonic structures, particularly in the subdiffraction limit, called as metamaterials, give rise to unprecedented control of light. Metamaterials and their novel applications as well as self-assembly in LCs are well-reviewed subjects. However, there are very few articles on burgeoning and novel field of LC-integrated metamaterials, which is a subject of interest in the current article. In this article, we provide an extensive review of nematic LC-based metasurfaces giving rise to advanced functionalities of light manipulation such as beam steering, light detection and ranging, holography, sensing, and multifunctional and reconfigurable optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信