Xiaoni Zhan, Wen Li, Eric Hatterer, Jean-Philippe Courade, Kristin Piché, Oxana Klementieva* and Jia-Yi Li*,
{"title":"光学光热红外亚微米成像相关方法揭示菌株α-突触核蛋白和Tau交叉播种。","authors":"Xiaoni Zhan, Wen Li, Eric Hatterer, Jean-Philippe Courade, Kristin Piché, Oxana Klementieva* and Jia-Yi Li*, ","doi":"10.1021/jacs.5c02811","DOIUrl":null,"url":null,"abstract":"<p >The co-occurrence of α-synuclein (αSyn) and Tau in synucleinopathies and tauopathies suggests a complex interplay between these proteins. Their cross-seeding enhances fibrillization, leading to the formation of diverse amyloid-specific structures enriched with β-sheets, which may influence their biological functions. However, existing tools cannot differentiate structural polymorphs directly in cells, as conventional microscopic approaches have limitations in providing structural insights into aggregates. As a result, a structurally relevant characterization of amyloids in their native cellular environment has not yet been achieved. In this study, we characterize the structural rearrangements of newly formed αSyn inclusions cross-seeded by different αSyn and Tau preformed fibrils (PFFs) directly in cells, using a correlative approach that combines submicron optical photothermal infrared (O-PTIR) microspectroscopy and confocal microscopy. We found that hybrid PFFs synthesized from αSyn, and two Tau isoforms (Tau3R and Tau4R) exhibit variations in αSyn and Tau composition. Specifically, structural polymorphs composed of αSyn and Tau3R exhibit the highest β-sheet content and most potent seeding potency, leading to enhanced phosphorylation within cellular inclusions. Importantly, we demonstrate that cellular inclusions inherit structural motifs from their donor seeds and exhibit distinct spatial and structural evolution. By providing subcellular-resolution structural imaging of amyloid proteins, our study uncovers divergent mechanisms of αSyn aggregation induced by αSyn/Tau PFFs in both mixed and hybrid formats.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 31","pages":"27323–27340"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c02811","citationCount":"0","resultStr":"{\"title\":\"Strain-Distinct α-Synuclein and Tau Cross-Seeding Uncovered by Correlative Approach with Optical Photothermal Infrared Sub-Micron Imaging\",\"authors\":\"Xiaoni Zhan, Wen Li, Eric Hatterer, Jean-Philippe Courade, Kristin Piché, Oxana Klementieva* and Jia-Yi Li*, \",\"doi\":\"10.1021/jacs.5c02811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The co-occurrence of α-synuclein (αSyn) and Tau in synucleinopathies and tauopathies suggests a complex interplay between these proteins. Their cross-seeding enhances fibrillization, leading to the formation of diverse amyloid-specific structures enriched with β-sheets, which may influence their biological functions. However, existing tools cannot differentiate structural polymorphs directly in cells, as conventional microscopic approaches have limitations in providing structural insights into aggregates. As a result, a structurally relevant characterization of amyloids in their native cellular environment has not yet been achieved. In this study, we characterize the structural rearrangements of newly formed αSyn inclusions cross-seeded by different αSyn and Tau preformed fibrils (PFFs) directly in cells, using a correlative approach that combines submicron optical photothermal infrared (O-PTIR) microspectroscopy and confocal microscopy. We found that hybrid PFFs synthesized from αSyn, and two Tau isoforms (Tau3R and Tau4R) exhibit variations in αSyn and Tau composition. Specifically, structural polymorphs composed of αSyn and Tau3R exhibit the highest β-sheet content and most potent seeding potency, leading to enhanced phosphorylation within cellular inclusions. Importantly, we demonstrate that cellular inclusions inherit structural motifs from their donor seeds and exhibit distinct spatial and structural evolution. By providing subcellular-resolution structural imaging of amyloid proteins, our study uncovers divergent mechanisms of αSyn aggregation induced by αSyn/Tau PFFs in both mixed and hybrid formats.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 31\",\"pages\":\"27323–27340\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c02811\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c02811\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c02811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strain-Distinct α-Synuclein and Tau Cross-Seeding Uncovered by Correlative Approach with Optical Photothermal Infrared Sub-Micron Imaging
The co-occurrence of α-synuclein (αSyn) and Tau in synucleinopathies and tauopathies suggests a complex interplay between these proteins. Their cross-seeding enhances fibrillization, leading to the formation of diverse amyloid-specific structures enriched with β-sheets, which may influence their biological functions. However, existing tools cannot differentiate structural polymorphs directly in cells, as conventional microscopic approaches have limitations in providing structural insights into aggregates. As a result, a structurally relevant characterization of amyloids in their native cellular environment has not yet been achieved. In this study, we characterize the structural rearrangements of newly formed αSyn inclusions cross-seeded by different αSyn and Tau preformed fibrils (PFFs) directly in cells, using a correlative approach that combines submicron optical photothermal infrared (O-PTIR) microspectroscopy and confocal microscopy. We found that hybrid PFFs synthesized from αSyn, and two Tau isoforms (Tau3R and Tau4R) exhibit variations in αSyn and Tau composition. Specifically, structural polymorphs composed of αSyn and Tau3R exhibit the highest β-sheet content and most potent seeding potency, leading to enhanced phosphorylation within cellular inclusions. Importantly, we demonstrate that cellular inclusions inherit structural motifs from their donor seeds and exhibit distinct spatial and structural evolution. By providing subcellular-resolution structural imaging of amyloid proteins, our study uncovers divergent mechanisms of αSyn aggregation induced by αSyn/Tau PFFs in both mixed and hybrid formats.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.