多密钥全同态加密:利用离散高斯分布上的模糊引理去除分布式解密中的噪声泛洪

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaokang Dai, Wenyuan Wu, Yong Feng
{"title":"多密钥全同态加密:利用离散高斯分布上的模糊引理去除分布式解密中的噪声泛洪","authors":"Xiaokang Dai,&nbsp;Wenyuan Wu,&nbsp;Yong Feng","doi":"10.1049/ise2/7550044","DOIUrl":null,"url":null,"abstract":"<p>The current multikey fully homomorphic encryption (MKFHE) needs to add exponential noise in the distributed decryption phase to ensure the simulatability of partial decryption. Such a large noise causes the ciphertext modulus of the scheme to increase exponentially compared to the single-key fully homomorphic encryption (FHE), further reducing the efficiency of the scheme and making the hardness problem on the lattice on which the scheme relies have a subexponential approximation factor <span></span><math></math> (which means that the security of the scheme is reduced). To address this problem, this paper analyzes in detail the noise in partial decryption of the MKFHE based on the learning with error (LWE) problem. It points out that this part of the noise is composed of private key and the noise in initial ciphertext. Therefore, as long as the encryption scheme is leak-resistant and the noise in partial decryption is independent of the noise in the initial ciphertext, the semantic security of the ciphertext can be guaranteed. In order to make the noise in the initial ciphertext independent of the noise in the partial decryption, this paper proves the smudging lemma on discrete Gaussian distribution and achieves this goal by multiplying the initial ciphertext by a “dummy” ciphertext with a plaintext of 1. Based on the above method, this paper removes the exponential noise in the distributed decryption phase for the first time and reduces the ciphertext modulus of MKFHE from 2<sup><i>ω</i>(<i>λ</i><i>L</i> log<i>λ</i>)</sup> to 2<sup><i>O</i>(<i>λ</i> + <i>L</i>)</sup> as the same level as the FHE.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/7550044","citationCount":"0","resultStr":"{\"title\":\"Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution\",\"authors\":\"Xiaokang Dai,&nbsp;Wenyuan Wu,&nbsp;Yong Feng\",\"doi\":\"10.1049/ise2/7550044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current multikey fully homomorphic encryption (MKFHE) needs to add exponential noise in the distributed decryption phase to ensure the simulatability of partial decryption. Such a large noise causes the ciphertext modulus of the scheme to increase exponentially compared to the single-key fully homomorphic encryption (FHE), further reducing the efficiency of the scheme and making the hardness problem on the lattice on which the scheme relies have a subexponential approximation factor <span></span><math></math> (which means that the security of the scheme is reduced). To address this problem, this paper analyzes in detail the noise in partial decryption of the MKFHE based on the learning with error (LWE) problem. It points out that this part of the noise is composed of private key and the noise in initial ciphertext. Therefore, as long as the encryption scheme is leak-resistant and the noise in partial decryption is independent of the noise in the initial ciphertext, the semantic security of the ciphertext can be guaranteed. In order to make the noise in the initial ciphertext independent of the noise in the partial decryption, this paper proves the smudging lemma on discrete Gaussian distribution and achieves this goal by multiplying the initial ciphertext by a “dummy” ciphertext with a plaintext of 1. Based on the above method, this paper removes the exponential noise in the distributed decryption phase for the first time and reduces the ciphertext modulus of MKFHE from 2<sup><i>ω</i>(<i>λ</i><i>L</i> log<i>λ</i>)</sup> to 2<sup><i>O</i>(<i>λ</i> + <i>L</i>)</sup> as the same level as the FHE.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/7550044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ise2/7550044\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ise2/7550044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

当前的多密钥全同态加密(MKFHE)需要在分布式解密阶段加入指数噪声以保证部分解密的可模拟性。如此大的噪声导致该方案的密文模量与单密钥全同态加密(FHE)相比呈指数级增长,进一步降低了方案的效率,并使方案所依赖的晶格上的硬度问题具有次指数逼近因子(这意味着方案的安全性降低)。为了解决这一问题,本文详细分析了基于带误差学习(LWE)问题的MKFHE部分解密中的噪声。指出这部分噪声由私钥噪声和初始密文噪声组成。因此,只要加密方案是防泄漏的,并且部分解密中的噪声独立于初始密文中的噪声,就可以保证密文的语义安全性。为了使初始密文中的噪声独立于部分解密中的噪声,本文证明了离散高斯分布上的模糊引理,并通过将初始密文乘以明文为1的“假”密文来实现这一目标。基于上述方法,本文首次去除分布式解密阶段的指数噪声,将MKFHE的密文模量从2ω(λL logλ)降低到与FHE同级的20 (λ + L)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution

Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution

Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution

Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution

Multikey Fully Homomorphic Encryption: Removing Noise Flooding in Distributed Decryption via the Smudging Lemma on Discrete Gaussian Distribution

The current multikey fully homomorphic encryption (MKFHE) needs to add exponential noise in the distributed decryption phase to ensure the simulatability of partial decryption. Such a large noise causes the ciphertext modulus of the scheme to increase exponentially compared to the single-key fully homomorphic encryption (FHE), further reducing the efficiency of the scheme and making the hardness problem on the lattice on which the scheme relies have a subexponential approximation factor (which means that the security of the scheme is reduced). To address this problem, this paper analyzes in detail the noise in partial decryption of the MKFHE based on the learning with error (LWE) problem. It points out that this part of the noise is composed of private key and the noise in initial ciphertext. Therefore, as long as the encryption scheme is leak-resistant and the noise in partial decryption is independent of the noise in the initial ciphertext, the semantic security of the ciphertext can be guaranteed. In order to make the noise in the initial ciphertext independent of the noise in the partial decryption, this paper proves the smudging lemma on discrete Gaussian distribution and achieves this goal by multiplying the initial ciphertext by a “dummy” ciphertext with a plaintext of 1. Based on the above method, this paper removes the exponential noise in the distributed decryption phase for the first time and reduces the ciphertext modulus of MKFHE from 2ω(λL logλ) to 2O(λ + L) as the same level as the FHE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信