Yue Gao, Peipei Wang, Ye Zhang, Junwei Wang, Chuanyang Wang
{"title":"基于平台的地铁客流预测:一种新颖的CNN-BILSTM-Attention方法","authors":"Yue Gao, Peipei Wang, Ye Zhang, Junwei Wang, Chuanyang Wang","doi":"10.1049/itr2.70069","DOIUrl":null,"url":null,"abstract":"<p>Accurate platform-based passenger flow prediction based on deep learning technology becomes crucial for efficient operation and management; in particular, the prediction integrating external weather factors, temporal dependencies and spatial features is desired but has not been addressed. This paper is different from the previous station-based passenger flow prediction, but reconstructs data recorded by the Automatic Fare Collection System (AFCS) for platform-based prediction. Existing deep learning techniques often struggle with issues such as high computational cost in traffic flow prediction. To address these issues, a novel passenger flow prediction model is proposed that integrates convolutional neural networks (CNN) with bi-directional long short-term memory networks (BILSTM) and an attention mechanism (CNN-BILSTM-Attention). The proposed model takes preprocessed numerical weather features, temporal and spatial features as input. The CNN extracts spatial patterns from passenger flow data, the BILSTM captures temporal dependencies and the attention mechanism dynamically adjusts the importance weights of features at different time slots. By integrating these components, the model effectively captures spatiotemporal patterns while accounting for weather impacts. Experimental results demonstrate that the proposed approach outputs an efficient and accurate prediction.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70069","citationCount":"0","resultStr":"{\"title\":\"Platform-Based Passenger Flow Prediction in Metro Systems: A Novel CNN-BILSTM-Attention Approach\",\"authors\":\"Yue Gao, Peipei Wang, Ye Zhang, Junwei Wang, Chuanyang Wang\",\"doi\":\"10.1049/itr2.70069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate platform-based passenger flow prediction based on deep learning technology becomes crucial for efficient operation and management; in particular, the prediction integrating external weather factors, temporal dependencies and spatial features is desired but has not been addressed. This paper is different from the previous station-based passenger flow prediction, but reconstructs data recorded by the Automatic Fare Collection System (AFCS) for platform-based prediction. Existing deep learning techniques often struggle with issues such as high computational cost in traffic flow prediction. To address these issues, a novel passenger flow prediction model is proposed that integrates convolutional neural networks (CNN) with bi-directional long short-term memory networks (BILSTM) and an attention mechanism (CNN-BILSTM-Attention). The proposed model takes preprocessed numerical weather features, temporal and spatial features as input. The CNN extracts spatial patterns from passenger flow data, the BILSTM captures temporal dependencies and the attention mechanism dynamically adjusts the importance weights of features at different time slots. By integrating these components, the model effectively captures spatiotemporal patterns while accounting for weather impacts. Experimental results demonstrate that the proposed approach outputs an efficient and accurate prediction.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70069\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Platform-Based Passenger Flow Prediction in Metro Systems: A Novel CNN-BILSTM-Attention Approach
Accurate platform-based passenger flow prediction based on deep learning technology becomes crucial for efficient operation and management; in particular, the prediction integrating external weather factors, temporal dependencies and spatial features is desired but has not been addressed. This paper is different from the previous station-based passenger flow prediction, but reconstructs data recorded by the Automatic Fare Collection System (AFCS) for platform-based prediction. Existing deep learning techniques often struggle with issues such as high computational cost in traffic flow prediction. To address these issues, a novel passenger flow prediction model is proposed that integrates convolutional neural networks (CNN) with bi-directional long short-term memory networks (BILSTM) and an attention mechanism (CNN-BILSTM-Attention). The proposed model takes preprocessed numerical weather features, temporal and spatial features as input. The CNN extracts spatial patterns from passenger flow data, the BILSTM captures temporal dependencies and the attention mechanism dynamically adjusts the importance weights of features at different time slots. By integrating these components, the model effectively captures spatiotemporal patterns while accounting for weather impacts. Experimental results demonstrate that the proposed approach outputs an efficient and accurate prediction.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf