{"title":"梯度流解码","authors":"Tadashi Wadayama;Lantian Wei","doi":"10.1109/ACCESS.2025.3592296","DOIUrl":null,"url":null,"abstract":"This paper presents the Gradient Flow (GF) decoding for LDPC codes. GF decoding, a continuous-time methodology based on gradient flow, employs a potential energy function associated with bipolar codewords of LDPC codes. The decoding process of the GF decoding is concisely defined by an ordinary differential equation and thus it is well suited to an analog circuit implementation. We experimentally demonstrate that the decoding performance of the GF decoding for AWGN channels is comparable to that of the multi-bit mode gradient descent bit flipping algorithm. We further introduce the negative log-likelihood function of the channel for generalizing the GF decoding. The proposed method is shown to be tensor-computable, which means that the gradient of the objective function can be evaluated with the combination of basic tensor computations. This characteristic is well-suited to emerging AI accelerators, potentially applicable in wireless signal processing. The paper assesses the decoding performance of the generalized GF decoding in LDPC-coded MIMO channels. For LDPC-coded MIMO channels, our method achieves approximately 1.6 dB performance gain over MMSE + BP. Furthermore, an exploration of score-based channel learning for capturing statistical properties is also provided.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"131937-131956"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11095675","citationCount":"0","resultStr":"{\"title\":\"Gradient Flow Decoding\",\"authors\":\"Tadashi Wadayama;Lantian Wei\",\"doi\":\"10.1109/ACCESS.2025.3592296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the Gradient Flow (GF) decoding for LDPC codes. GF decoding, a continuous-time methodology based on gradient flow, employs a potential energy function associated with bipolar codewords of LDPC codes. The decoding process of the GF decoding is concisely defined by an ordinary differential equation and thus it is well suited to an analog circuit implementation. We experimentally demonstrate that the decoding performance of the GF decoding for AWGN channels is comparable to that of the multi-bit mode gradient descent bit flipping algorithm. We further introduce the negative log-likelihood function of the channel for generalizing the GF decoding. The proposed method is shown to be tensor-computable, which means that the gradient of the objective function can be evaluated with the combination of basic tensor computations. This characteristic is well-suited to emerging AI accelerators, potentially applicable in wireless signal processing. The paper assesses the decoding performance of the generalized GF decoding in LDPC-coded MIMO channels. For LDPC-coded MIMO channels, our method achieves approximately 1.6 dB performance gain over MMSE + BP. Furthermore, an exploration of score-based channel learning for capturing statistical properties is also provided.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"131937-131956\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11095675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095675/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11095675/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
This paper presents the Gradient Flow (GF) decoding for LDPC codes. GF decoding, a continuous-time methodology based on gradient flow, employs a potential energy function associated with bipolar codewords of LDPC codes. The decoding process of the GF decoding is concisely defined by an ordinary differential equation and thus it is well suited to an analog circuit implementation. We experimentally demonstrate that the decoding performance of the GF decoding for AWGN channels is comparable to that of the multi-bit mode gradient descent bit flipping algorithm. We further introduce the negative log-likelihood function of the channel for generalizing the GF decoding. The proposed method is shown to be tensor-computable, which means that the gradient of the objective function can be evaluated with the combination of basic tensor computations. This characteristic is well-suited to emerging AI accelerators, potentially applicable in wireless signal processing. The paper assesses the decoding performance of the generalized GF decoding in LDPC-coded MIMO channels. For LDPC-coded MIMO channels, our method achieves approximately 1.6 dB performance gain over MMSE + BP. Furthermore, an exploration of score-based channel learning for capturing statistical properties is also provided.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.