Yaozong Gan , Guang Li , Ren Togo , Keisuke Maeda , Takahiro Ogawa , Miki Haseyama
{"title":"跨域多步骤思考:零采样细粒度交通标志识别","authors":"Yaozong Gan , Guang Li , Ren Togo , Keisuke Maeda , Takahiro Ogawa , Miki Haseyama","doi":"10.1016/j.knosys.2025.114172","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose <strong>C</strong>ross-<strong>d</strong>omain <strong>M</strong>ulti-step <strong>T</strong>hinking (<strong>CdMT</strong>) to improve zero-shot fine-grained traffic sign recognition (TSR) performance in the wild. Zero-shot fine-grained TSR in the wild is challenging due to the cross-domain problem between clean template traffic signs and real-world counterparts, and existing approaches particularly struggle with cross-country TSR scenarios, where traffic signs typically differ between countries. The proposed CdMT framework tackles these challenges by leveraging the multi-step reasoning capabilities of large multimodal models (LMMs). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for LMMs. Context descriptions, which are enhanced by center coordinate prompt optimization, enable the precise localization of target traffic signs in complex road images and filter irrelevant responses via novel prior traffic sign hypotheses. Characteristic descriptions, which are derived from in-context learning with template traffic signs, bridge cross-domain gaps and enhance fine-grained TSR. Differential descriptions refine the multimodal reasoning ability of LMMs by distinguishing subtle differences among similar signs. CdMT is independent of training data and requires only simple and uniform instructions, enabling it to achieve cross-country TSR. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries. The proposed CdMT framework achieved superior performance compared with other state-of-the-art methods on all five datasets, with recognition accuracies of 0.93, 0.89, 0.97, 0.89, and 0.85 on the GTSRB, BTSD, TT-100K, Sapporo, and Yokohama datasets, respectively.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"327 ","pages":"Article 114172"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-domain Multi-step Thinking: Zero-shot Fine-grained Traffic Sign Recognition in the Wild\",\"authors\":\"Yaozong Gan , Guang Li , Ren Togo , Keisuke Maeda , Takahiro Ogawa , Miki Haseyama\",\"doi\":\"10.1016/j.knosys.2025.114172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we propose <strong>C</strong>ross-<strong>d</strong>omain <strong>M</strong>ulti-step <strong>T</strong>hinking (<strong>CdMT</strong>) to improve zero-shot fine-grained traffic sign recognition (TSR) performance in the wild. Zero-shot fine-grained TSR in the wild is challenging due to the cross-domain problem between clean template traffic signs and real-world counterparts, and existing approaches particularly struggle with cross-country TSR scenarios, where traffic signs typically differ between countries. The proposed CdMT framework tackles these challenges by leveraging the multi-step reasoning capabilities of large multimodal models (LMMs). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for LMMs. Context descriptions, which are enhanced by center coordinate prompt optimization, enable the precise localization of target traffic signs in complex road images and filter irrelevant responses via novel prior traffic sign hypotheses. Characteristic descriptions, which are derived from in-context learning with template traffic signs, bridge cross-domain gaps and enhance fine-grained TSR. Differential descriptions refine the multimodal reasoning ability of LMMs by distinguishing subtle differences among similar signs. CdMT is independent of training data and requires only simple and uniform instructions, enabling it to achieve cross-country TSR. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries. The proposed CdMT framework achieved superior performance compared with other state-of-the-art methods on all five datasets, with recognition accuracies of 0.93, 0.89, 0.97, 0.89, and 0.85 on the GTSRB, BTSD, TT-100K, Sapporo, and Yokohama datasets, respectively.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"327 \",\"pages\":\"Article 114172\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125012134\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125012134","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cross-domain Multi-step Thinking: Zero-shot Fine-grained Traffic Sign Recognition in the Wild
In this study, we propose Cross-domain Multi-step Thinking (CdMT) to improve zero-shot fine-grained traffic sign recognition (TSR) performance in the wild. Zero-shot fine-grained TSR in the wild is challenging due to the cross-domain problem between clean template traffic signs and real-world counterparts, and existing approaches particularly struggle with cross-country TSR scenarios, where traffic signs typically differ between countries. The proposed CdMT framework tackles these challenges by leveraging the multi-step reasoning capabilities of large multimodal models (LMMs). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for LMMs. Context descriptions, which are enhanced by center coordinate prompt optimization, enable the precise localization of target traffic signs in complex road images and filter irrelevant responses via novel prior traffic sign hypotheses. Characteristic descriptions, which are derived from in-context learning with template traffic signs, bridge cross-domain gaps and enhance fine-grained TSR. Differential descriptions refine the multimodal reasoning ability of LMMs by distinguishing subtle differences among similar signs. CdMT is independent of training data and requires only simple and uniform instructions, enabling it to achieve cross-country TSR. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries. The proposed CdMT framework achieved superior performance compared with other state-of-the-art methods on all five datasets, with recognition accuracies of 0.93, 0.89, 0.97, 0.89, and 0.85 on the GTSRB, BTSD, TT-100K, Sapporo, and Yokohama datasets, respectively.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.