Ning Ning Chung , Hamed Taghavian , Mikael Johansson , Lock Yue Chew
{"title":"基于强化学习的电梯系统模块化神经网络的构建演示","authors":"Ning Ning Chung , Hamed Taghavian , Mikael Johansson , Lock Yue Chew","doi":"10.1016/j.jocs.2025.102678","DOIUrl":null,"url":null,"abstract":"<div><div>We study how neural networks can perform the task of elevator dispatching of commuters from their origins to their destinations. Instead of applying a neural network in the conventional way, we construct a specific neural network architecture that optimizes the commuters’ traveling time after taking into account the domain knowledge and the efficacy of potential future actions. The constructed architecture is modular with building blocks of neuronal structure that serve specified functional roles. By relaxing the weights and then training this network via reinforcement learning, we show that it outperforms an agent that implements the standard elevator algorithm. More remarkably, we observe the spontaneous emergence of functional modules within the structure of the network in consequence of the action sequences experienced during training. This behavioral feature of the neural network makes it less of a black box, with specific aspects of its functions being explicitly discernible from its network connections.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102678"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A demonstration on the construction of modular neural network using elevator system that operates based on reinforcement learning\",\"authors\":\"Ning Ning Chung , Hamed Taghavian , Mikael Johansson , Lock Yue Chew\",\"doi\":\"10.1016/j.jocs.2025.102678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study how neural networks can perform the task of elevator dispatching of commuters from their origins to their destinations. Instead of applying a neural network in the conventional way, we construct a specific neural network architecture that optimizes the commuters’ traveling time after taking into account the domain knowledge and the efficacy of potential future actions. The constructed architecture is modular with building blocks of neuronal structure that serve specified functional roles. By relaxing the weights and then training this network via reinforcement learning, we show that it outperforms an agent that implements the standard elevator algorithm. More remarkably, we observe the spontaneous emergence of functional modules within the structure of the network in consequence of the action sequences experienced during training. This behavioral feature of the neural network makes it less of a black box, with specific aspects of its functions being explicitly discernible from its network connections.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"91 \",\"pages\":\"Article 102678\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325001553\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001553","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A demonstration on the construction of modular neural network using elevator system that operates based on reinforcement learning
We study how neural networks can perform the task of elevator dispatching of commuters from their origins to their destinations. Instead of applying a neural network in the conventional way, we construct a specific neural network architecture that optimizes the commuters’ traveling time after taking into account the domain knowledge and the efficacy of potential future actions. The constructed architecture is modular with building blocks of neuronal structure that serve specified functional roles. By relaxing the weights and then training this network via reinforcement learning, we show that it outperforms an agent that implements the standard elevator algorithm. More remarkably, we observe the spontaneous emergence of functional modules within the structure of the network in consequence of the action sequences experienced during training. This behavioral feature of the neural network makes it less of a black box, with specific aspects of its functions being explicitly discernible from its network connections.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).